Westonci.ca is the premier destination for reliable answers to your questions, provided by a community of experts. Get immediate answers to your questions from a wide network of experienced professionals on our Q&A platform. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
To determine the Gibbs free energy change ([tex]\(\Delta G_{rxn}\)[/tex]) for the reaction [tex]\(2 \text{SO}_2(g) + \text{O}_2(g) \rightarrow 2 \text{SO}_3(g)\)[/tex] and ascertain whether the reaction is spontaneous or nonspontaneous at [tex]\(300.0 \, \text{K}\)[/tex], we follow these steps:
### Step 1: Calculation of [tex]\(\Delta H_{rxn}\)[/tex]
We start by calculating the change in enthalpy ([tex]\(\Delta H_{rxn}\)[/tex]) for the reaction. This is given by:
[tex]\[ \Delta H_{rxn} = \sum \Delta H_f(\text{products}) - \sum \Delta H_f(\text{reactants}) \][/tex]
For our reaction, it becomes:
[tex]\[ \Delta H_{rxn} = [2 \Delta H_f(\text{SO}_3(g))] - [2 \Delta H_f(\text{SO}_2(g)) + \Delta H_f(\text{O}_2(g))] \][/tex]
Substituting the given values:
[tex]\[ \Delta H_{rxn} = [2(-396) \, \text{kJ/mol}] - [2(-297) \, \text{kJ/mol} + 0 \, \text{kJ/mol}] \][/tex]
[tex]\[ \Delta H_{rxn} = -792 \, \text{kJ} - (-594 \, \text{kJ}) \][/tex]
[tex]\[ \Delta H_{rxn} = -792 \, \text{kJ} + 594 \, \text{kJ} \][/tex]
[tex]\[ \Delta H_{rxn} = -198 \, \text{kJ} \][/tex]
### Step 2: Calculation of [tex]\(\Delta S_{rxn}\)[/tex]
Next, we calculate the change in entropy ([tex]\(\Delta S_{rxn}\)[/tex]) for the reaction. This is given by:
[tex]\[ \Delta S_{rxn} = \sum S(\text{products}) - \sum S(\text{reactants}) \][/tex]
For our reaction, it becomes:
[tex]\[ \Delta S_{rxn} = [2 S(\text{SO}_3(g))] - [2 S(\text{SO}_2(g)) + S(\text{O}_2(g))] \][/tex]
Substituting the given values:
[tex]\[ \Delta S_{rxn} = [2(130.58) \, \text{J/(mol·K)}] - [2(191.50) \, \text{J/(mol·K)} + 205.00 \, \text{J/(mol·K)}] \][/tex]
[tex]\[ \Delta S_{rxn} = 261.16 \, \text{J/(mol·K)} - [383.00 \, \text{J/(mol·K)} + 205.00 \, \text{J/(mol·K)}] \][/tex]
[tex]\[ \Delta S_{rxn} = 261.16 \, \text{J/(mol·K)} - 588.00 \, \text{J/(mol·K)} \][/tex]
[tex]\[ \Delta S_{rxn} = -326.84 \, \text{J/(mol·K)} \][/tex]
### Step 3: Conversion of [tex]\(\Delta S_{rxn}\)[/tex] to kJ/(mol·K)
Since [tex]\(\Delta H_{rxn}\)[/tex] is in kJ, we should convert [tex]\(\Delta S_{rxn}\)[/tex] from J/(mol·K) to kJ/(mol·K):
[tex]\[ \Delta S_{rxn} = -326.84 \, \text{J/(mol·K)} \times \frac{1 \, \text{kJ}}{1000 \, \text{J}} \][/tex]
[tex]\[ \Delta S_{rxn} = -0.32684 \, \text{kJ/(mol·K)} \][/tex]
### Step 4: Calculation of [tex]\(\Delta G_{rxn}\)[/tex]
Now, we can calculate the Gibbs free energy change ([tex]\(\Delta G_{rxn}\)[/tex]) using the equation:
[tex]\[ \Delta G_{rxn} = \Delta H_{rxn} - T \Delta S_{rxn} \][/tex]
Substituting the calculated values and the given temperature ([tex]\(T = 300.0 \, \text{K}\)[/tex]):
[tex]\[ \Delta G_{rxn} = -198 \, \text{kJ} - 300.0 \, \text{K} \times (-0.32684 \, \text{kJ/(mol·K)}) \][/tex]
[tex]\[ \Delta G_{rxn} = -198 \, \text{kJ} + 98.052 \, \text{kJ} \][/tex]
[tex]\[ \Delta G_{rxn} = -99.948 \, \text{kJ} \][/tex]
### Step 5: Determination of Spontaneity
Since [tex]\(\Delta G_{rxn}\)[/tex] is negative:
[tex]\[ \Delta G_{rxn} = -99.948 \, \text{kJ} < 0 \][/tex]
The reaction is spontaneous.
### Conclusion
The Gibbs free energy change ([tex]\(\Delta G_{rxn}\)[/tex]) for the reaction [tex]\(2 \text{SO}_2(g) + \text{O}_2(g) \rightarrow 2 \text{SO}_3(g)\)[/tex] at [tex]\(300.0 \, \text{K}\)[/tex] is [tex]\(-100 \, \text{kJ}\)[/tex], and the reaction is spontaneous. Thus, the correct answer is:
[tex]\[ -100 \, \text{kJ/mol}, \text{spontaneous} \][/tex]
### Step 1: Calculation of [tex]\(\Delta H_{rxn}\)[/tex]
We start by calculating the change in enthalpy ([tex]\(\Delta H_{rxn}\)[/tex]) for the reaction. This is given by:
[tex]\[ \Delta H_{rxn} = \sum \Delta H_f(\text{products}) - \sum \Delta H_f(\text{reactants}) \][/tex]
For our reaction, it becomes:
[tex]\[ \Delta H_{rxn} = [2 \Delta H_f(\text{SO}_3(g))] - [2 \Delta H_f(\text{SO}_2(g)) + \Delta H_f(\text{O}_2(g))] \][/tex]
Substituting the given values:
[tex]\[ \Delta H_{rxn} = [2(-396) \, \text{kJ/mol}] - [2(-297) \, \text{kJ/mol} + 0 \, \text{kJ/mol}] \][/tex]
[tex]\[ \Delta H_{rxn} = -792 \, \text{kJ} - (-594 \, \text{kJ}) \][/tex]
[tex]\[ \Delta H_{rxn} = -792 \, \text{kJ} + 594 \, \text{kJ} \][/tex]
[tex]\[ \Delta H_{rxn} = -198 \, \text{kJ} \][/tex]
### Step 2: Calculation of [tex]\(\Delta S_{rxn}\)[/tex]
Next, we calculate the change in entropy ([tex]\(\Delta S_{rxn}\)[/tex]) for the reaction. This is given by:
[tex]\[ \Delta S_{rxn} = \sum S(\text{products}) - \sum S(\text{reactants}) \][/tex]
For our reaction, it becomes:
[tex]\[ \Delta S_{rxn} = [2 S(\text{SO}_3(g))] - [2 S(\text{SO}_2(g)) + S(\text{O}_2(g))] \][/tex]
Substituting the given values:
[tex]\[ \Delta S_{rxn} = [2(130.58) \, \text{J/(mol·K)}] - [2(191.50) \, \text{J/(mol·K)} + 205.00 \, \text{J/(mol·K)}] \][/tex]
[tex]\[ \Delta S_{rxn} = 261.16 \, \text{J/(mol·K)} - [383.00 \, \text{J/(mol·K)} + 205.00 \, \text{J/(mol·K)}] \][/tex]
[tex]\[ \Delta S_{rxn} = 261.16 \, \text{J/(mol·K)} - 588.00 \, \text{J/(mol·K)} \][/tex]
[tex]\[ \Delta S_{rxn} = -326.84 \, \text{J/(mol·K)} \][/tex]
### Step 3: Conversion of [tex]\(\Delta S_{rxn}\)[/tex] to kJ/(mol·K)
Since [tex]\(\Delta H_{rxn}\)[/tex] is in kJ, we should convert [tex]\(\Delta S_{rxn}\)[/tex] from J/(mol·K) to kJ/(mol·K):
[tex]\[ \Delta S_{rxn} = -326.84 \, \text{J/(mol·K)} \times \frac{1 \, \text{kJ}}{1000 \, \text{J}} \][/tex]
[tex]\[ \Delta S_{rxn} = -0.32684 \, \text{kJ/(mol·K)} \][/tex]
### Step 4: Calculation of [tex]\(\Delta G_{rxn}\)[/tex]
Now, we can calculate the Gibbs free energy change ([tex]\(\Delta G_{rxn}\)[/tex]) using the equation:
[tex]\[ \Delta G_{rxn} = \Delta H_{rxn} - T \Delta S_{rxn} \][/tex]
Substituting the calculated values and the given temperature ([tex]\(T = 300.0 \, \text{K}\)[/tex]):
[tex]\[ \Delta G_{rxn} = -198 \, \text{kJ} - 300.0 \, \text{K} \times (-0.32684 \, \text{kJ/(mol·K)}) \][/tex]
[tex]\[ \Delta G_{rxn} = -198 \, \text{kJ} + 98.052 \, \text{kJ} \][/tex]
[tex]\[ \Delta G_{rxn} = -99.948 \, \text{kJ} \][/tex]
### Step 5: Determination of Spontaneity
Since [tex]\(\Delta G_{rxn}\)[/tex] is negative:
[tex]\[ \Delta G_{rxn} = -99.948 \, \text{kJ} < 0 \][/tex]
The reaction is spontaneous.
### Conclusion
The Gibbs free energy change ([tex]\(\Delta G_{rxn}\)[/tex]) for the reaction [tex]\(2 \text{SO}_2(g) + \text{O}_2(g) \rightarrow 2 \text{SO}_3(g)\)[/tex] at [tex]\(300.0 \, \text{K}\)[/tex] is [tex]\(-100 \, \text{kJ}\)[/tex], and the reaction is spontaneous. Thus, the correct answer is:
[tex]\[ -100 \, \text{kJ/mol}, \text{spontaneous} \][/tex]
We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Thank you for visiting Westonci.ca. Stay informed by coming back for more detailed answers.