Looking for answers? Westonci.ca is your go-to Q&A platform, offering quick, trustworthy responses from a community of experts. Experience the ease of finding accurate answers to your questions from a knowledgeable community of professionals. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.
Sagot :
Let's solve the expression [tex]\(\left(-\frac{3}{4}\right)^{\frac{2}{3}}\)[/tex] step-by-step.
To deal with the fractional exponent of a negative base, we need to consider complex numbers because raising a negative number to a fractional power generally results in a complex number.
Given:
[tex]\[ \left( -\frac{3}{4} \right)^{\frac{2}{3}} \][/tex]
First, let's convert [tex]\(-\frac{3}{4}\)[/tex] into its polar form. The polar form of a complex number [tex]\(r e^{i \theta}\)[/tex] can be useful in evaluating exponents. Here, [tex]\(r\)[/tex] is the magnitude and [tex]\(\theta\)[/tex] is the argument (angle).
1. Calculate the magnitude:
[tex]\[ r = \left| -\frac{3}{4} \right| = \frac{3}{4} \][/tex]
2. Determine the argument:
[tex]\[ \theta = \pi \quad \text{(since the number is negative, its angle with the positive real axis is } \pi \text{ radians)} \][/tex]
Now, express [tex]\(-\frac{3}{4}\)[/tex] in its polar form:
[tex]\[ -\frac{3}{4} = \frac{3}{4} e^{i \pi} \][/tex]
Now we need to raise this to the power of [tex]\(\frac{2}{3}\)[/tex]:
[tex]\[ \left( \frac{3}{4} e^{i \pi} \right)^{\frac{2}{3}} \][/tex]
Using properties of exponents in polar form:
[tex]\[ \left( \frac{3}{4} \right)^{\frac{2}{3}} e^{i \pi \cdot \frac{2}{3}} \][/tex]
3. Calculate the magnitude part:
[tex]\[ \left( \frac{3}{4} \right)^{\frac{2}{3}} \][/tex]
4. Compute the argument part:
[tex]\[ e^{i \cdot \frac{2}{3} \pi} \][/tex]
Putting it all together:
[tex]\[ \left( \frac{3}{4} \right)^{\frac{2}{3}} \cdot e^{i \cdot \frac{2}{3} \pi} \][/tex]
Evaluate the magnitude:
[tex]\[ \left( \frac{3}{4} \right)^{\frac{2}{3}} \approx 0.641 \][/tex]
Evaluate the argument:
[tex]\[ e^{i \cdot \frac{2}{3} \pi} = \cos \left( \frac{2}{3} \pi \right) + i \sin \left( \frac{2}{3} \pi \right) \][/tex]
Using the values of [tex]\(\cos \left( \frac{2}{3} \pi \right)\)[/tex] and [tex]\(\sin \left( \frac{2}{3} \pi \right)\)[/tex]:
[tex]\[ \cos \left( \frac{2}{3} \pi \right) \approx -0.5 \quad \text{and} \quad \sin \left( \frac{2}{3} \pi \right) \approx 0.866 \][/tex]
Thus:
[tex]\[ e^{i \cdot \frac{2}{3} \pi} \approx -0.5 + 0.866i \][/tex]
Combining both parts:
[tex]\[ \left( \frac{3}{4} \right)^{\frac{2}{3}} \cdot \left( -0.5 + 0.866i \right) \][/tex]
The final result is:
[tex]\[ (-0.4127409061118282 + 0.7148882197477024i) \][/tex]
So, the result of [tex]\(\left( -\frac{3}{4} \right)^{\frac{2}{3}}\)[/tex] is:
[tex]\[ \boxed{(-0.4127409061118282 + 0.7148882197477024i)} \][/tex]
To deal with the fractional exponent of a negative base, we need to consider complex numbers because raising a negative number to a fractional power generally results in a complex number.
Given:
[tex]\[ \left( -\frac{3}{4} \right)^{\frac{2}{3}} \][/tex]
First, let's convert [tex]\(-\frac{3}{4}\)[/tex] into its polar form. The polar form of a complex number [tex]\(r e^{i \theta}\)[/tex] can be useful in evaluating exponents. Here, [tex]\(r\)[/tex] is the magnitude and [tex]\(\theta\)[/tex] is the argument (angle).
1. Calculate the magnitude:
[tex]\[ r = \left| -\frac{3}{4} \right| = \frac{3}{4} \][/tex]
2. Determine the argument:
[tex]\[ \theta = \pi \quad \text{(since the number is negative, its angle with the positive real axis is } \pi \text{ radians)} \][/tex]
Now, express [tex]\(-\frac{3}{4}\)[/tex] in its polar form:
[tex]\[ -\frac{3}{4} = \frac{3}{4} e^{i \pi} \][/tex]
Now we need to raise this to the power of [tex]\(\frac{2}{3}\)[/tex]:
[tex]\[ \left( \frac{3}{4} e^{i \pi} \right)^{\frac{2}{3}} \][/tex]
Using properties of exponents in polar form:
[tex]\[ \left( \frac{3}{4} \right)^{\frac{2}{3}} e^{i \pi \cdot \frac{2}{3}} \][/tex]
3. Calculate the magnitude part:
[tex]\[ \left( \frac{3}{4} \right)^{\frac{2}{3}} \][/tex]
4. Compute the argument part:
[tex]\[ e^{i \cdot \frac{2}{3} \pi} \][/tex]
Putting it all together:
[tex]\[ \left( \frac{3}{4} \right)^{\frac{2}{3}} \cdot e^{i \cdot \frac{2}{3} \pi} \][/tex]
Evaluate the magnitude:
[tex]\[ \left( \frac{3}{4} \right)^{\frac{2}{3}} \approx 0.641 \][/tex]
Evaluate the argument:
[tex]\[ e^{i \cdot \frac{2}{3} \pi} = \cos \left( \frac{2}{3} \pi \right) + i \sin \left( \frac{2}{3} \pi \right) \][/tex]
Using the values of [tex]\(\cos \left( \frac{2}{3} \pi \right)\)[/tex] and [tex]\(\sin \left( \frac{2}{3} \pi \right)\)[/tex]:
[tex]\[ \cos \left( \frac{2}{3} \pi \right) \approx -0.5 \quad \text{and} \quad \sin \left( \frac{2}{3} \pi \right) \approx 0.866 \][/tex]
Thus:
[tex]\[ e^{i \cdot \frac{2}{3} \pi} \approx -0.5 + 0.866i \][/tex]
Combining both parts:
[tex]\[ \left( \frac{3}{4} \right)^{\frac{2}{3}} \cdot \left( -0.5 + 0.866i \right) \][/tex]
The final result is:
[tex]\[ (-0.4127409061118282 + 0.7148882197477024i) \][/tex]
So, the result of [tex]\(\left( -\frac{3}{4} \right)^{\frac{2}{3}}\)[/tex] is:
[tex]\[ \boxed{(-0.4127409061118282 + 0.7148882197477024i)} \][/tex]
We appreciate your time. Please revisit us for more reliable answers to any questions you may have. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.