Welcome to Westonci.ca, your one-stop destination for finding answers to all your questions. Join our expert community now! Get quick and reliable answers to your questions from a dedicated community of professionals on our platform. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.
Sagot :
Let's solve the expression [tex]\(\left(-\frac{3}{4}\right)^{\frac{2}{3}}\)[/tex] step-by-step.
To deal with the fractional exponent of a negative base, we need to consider complex numbers because raising a negative number to a fractional power generally results in a complex number.
Given:
[tex]\[ \left( -\frac{3}{4} \right)^{\frac{2}{3}} \][/tex]
First, let's convert [tex]\(-\frac{3}{4}\)[/tex] into its polar form. The polar form of a complex number [tex]\(r e^{i \theta}\)[/tex] can be useful in evaluating exponents. Here, [tex]\(r\)[/tex] is the magnitude and [tex]\(\theta\)[/tex] is the argument (angle).
1. Calculate the magnitude:
[tex]\[ r = \left| -\frac{3}{4} \right| = \frac{3}{4} \][/tex]
2. Determine the argument:
[tex]\[ \theta = \pi \quad \text{(since the number is negative, its angle with the positive real axis is } \pi \text{ radians)} \][/tex]
Now, express [tex]\(-\frac{3}{4}\)[/tex] in its polar form:
[tex]\[ -\frac{3}{4} = \frac{3}{4} e^{i \pi} \][/tex]
Now we need to raise this to the power of [tex]\(\frac{2}{3}\)[/tex]:
[tex]\[ \left( \frac{3}{4} e^{i \pi} \right)^{\frac{2}{3}} \][/tex]
Using properties of exponents in polar form:
[tex]\[ \left( \frac{3}{4} \right)^{\frac{2}{3}} e^{i \pi \cdot \frac{2}{3}} \][/tex]
3. Calculate the magnitude part:
[tex]\[ \left( \frac{3}{4} \right)^{\frac{2}{3}} \][/tex]
4. Compute the argument part:
[tex]\[ e^{i \cdot \frac{2}{3} \pi} \][/tex]
Putting it all together:
[tex]\[ \left( \frac{3}{4} \right)^{\frac{2}{3}} \cdot e^{i \cdot \frac{2}{3} \pi} \][/tex]
Evaluate the magnitude:
[tex]\[ \left( \frac{3}{4} \right)^{\frac{2}{3}} \approx 0.641 \][/tex]
Evaluate the argument:
[tex]\[ e^{i \cdot \frac{2}{3} \pi} = \cos \left( \frac{2}{3} \pi \right) + i \sin \left( \frac{2}{3} \pi \right) \][/tex]
Using the values of [tex]\(\cos \left( \frac{2}{3} \pi \right)\)[/tex] and [tex]\(\sin \left( \frac{2}{3} \pi \right)\)[/tex]:
[tex]\[ \cos \left( \frac{2}{3} \pi \right) \approx -0.5 \quad \text{and} \quad \sin \left( \frac{2}{3} \pi \right) \approx 0.866 \][/tex]
Thus:
[tex]\[ e^{i \cdot \frac{2}{3} \pi} \approx -0.5 + 0.866i \][/tex]
Combining both parts:
[tex]\[ \left( \frac{3}{4} \right)^{\frac{2}{3}} \cdot \left( -0.5 + 0.866i \right) \][/tex]
The final result is:
[tex]\[ (-0.4127409061118282 + 0.7148882197477024i) \][/tex]
So, the result of [tex]\(\left( -\frac{3}{4} \right)^{\frac{2}{3}}\)[/tex] is:
[tex]\[ \boxed{(-0.4127409061118282 + 0.7148882197477024i)} \][/tex]
To deal with the fractional exponent of a negative base, we need to consider complex numbers because raising a negative number to a fractional power generally results in a complex number.
Given:
[tex]\[ \left( -\frac{3}{4} \right)^{\frac{2}{3}} \][/tex]
First, let's convert [tex]\(-\frac{3}{4}\)[/tex] into its polar form. The polar form of a complex number [tex]\(r e^{i \theta}\)[/tex] can be useful in evaluating exponents. Here, [tex]\(r\)[/tex] is the magnitude and [tex]\(\theta\)[/tex] is the argument (angle).
1. Calculate the magnitude:
[tex]\[ r = \left| -\frac{3}{4} \right| = \frac{3}{4} \][/tex]
2. Determine the argument:
[tex]\[ \theta = \pi \quad \text{(since the number is negative, its angle with the positive real axis is } \pi \text{ radians)} \][/tex]
Now, express [tex]\(-\frac{3}{4}\)[/tex] in its polar form:
[tex]\[ -\frac{3}{4} = \frac{3}{4} e^{i \pi} \][/tex]
Now we need to raise this to the power of [tex]\(\frac{2}{3}\)[/tex]:
[tex]\[ \left( \frac{3}{4} e^{i \pi} \right)^{\frac{2}{3}} \][/tex]
Using properties of exponents in polar form:
[tex]\[ \left( \frac{3}{4} \right)^{\frac{2}{3}} e^{i \pi \cdot \frac{2}{3}} \][/tex]
3. Calculate the magnitude part:
[tex]\[ \left( \frac{3}{4} \right)^{\frac{2}{3}} \][/tex]
4. Compute the argument part:
[tex]\[ e^{i \cdot \frac{2}{3} \pi} \][/tex]
Putting it all together:
[tex]\[ \left( \frac{3}{4} \right)^{\frac{2}{3}} \cdot e^{i \cdot \frac{2}{3} \pi} \][/tex]
Evaluate the magnitude:
[tex]\[ \left( \frac{3}{4} \right)^{\frac{2}{3}} \approx 0.641 \][/tex]
Evaluate the argument:
[tex]\[ e^{i \cdot \frac{2}{3} \pi} = \cos \left( \frac{2}{3} \pi \right) + i \sin \left( \frac{2}{3} \pi \right) \][/tex]
Using the values of [tex]\(\cos \left( \frac{2}{3} \pi \right)\)[/tex] and [tex]\(\sin \left( \frac{2}{3} \pi \right)\)[/tex]:
[tex]\[ \cos \left( \frac{2}{3} \pi \right) \approx -0.5 \quad \text{and} \quad \sin \left( \frac{2}{3} \pi \right) \approx 0.866 \][/tex]
Thus:
[tex]\[ e^{i \cdot \frac{2}{3} \pi} \approx -0.5 + 0.866i \][/tex]
Combining both parts:
[tex]\[ \left( \frac{3}{4} \right)^{\frac{2}{3}} \cdot \left( -0.5 + 0.866i \right) \][/tex]
The final result is:
[tex]\[ (-0.4127409061118282 + 0.7148882197477024i) \][/tex]
So, the result of [tex]\(\left( -\frac{3}{4} \right)^{\frac{2}{3}}\)[/tex] is:
[tex]\[ \boxed{(-0.4127409061118282 + 0.7148882197477024i)} \][/tex]
We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Find reliable answers at Westonci.ca. Visit us again for the latest updates and expert advice.