Discover the answers to your questions at Westonci.ca, where experts share their knowledge and insights with you. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
Let's solve the expression [tex]\(\left(-\frac{3}{4}\right)^{\frac{2}{3}}\)[/tex] step-by-step.
To deal with the fractional exponent of a negative base, we need to consider complex numbers because raising a negative number to a fractional power generally results in a complex number.
Given:
[tex]\[ \left( -\frac{3}{4} \right)^{\frac{2}{3}} \][/tex]
First, let's convert [tex]\(-\frac{3}{4}\)[/tex] into its polar form. The polar form of a complex number [tex]\(r e^{i \theta}\)[/tex] can be useful in evaluating exponents. Here, [tex]\(r\)[/tex] is the magnitude and [tex]\(\theta\)[/tex] is the argument (angle).
1. Calculate the magnitude:
[tex]\[ r = \left| -\frac{3}{4} \right| = \frac{3}{4} \][/tex]
2. Determine the argument:
[tex]\[ \theta = \pi \quad \text{(since the number is negative, its angle with the positive real axis is } \pi \text{ radians)} \][/tex]
Now, express [tex]\(-\frac{3}{4}\)[/tex] in its polar form:
[tex]\[ -\frac{3}{4} = \frac{3}{4} e^{i \pi} \][/tex]
Now we need to raise this to the power of [tex]\(\frac{2}{3}\)[/tex]:
[tex]\[ \left( \frac{3}{4} e^{i \pi} \right)^{\frac{2}{3}} \][/tex]
Using properties of exponents in polar form:
[tex]\[ \left( \frac{3}{4} \right)^{\frac{2}{3}} e^{i \pi \cdot \frac{2}{3}} \][/tex]
3. Calculate the magnitude part:
[tex]\[ \left( \frac{3}{4} \right)^{\frac{2}{3}} \][/tex]
4. Compute the argument part:
[tex]\[ e^{i \cdot \frac{2}{3} \pi} \][/tex]
Putting it all together:
[tex]\[ \left( \frac{3}{4} \right)^{\frac{2}{3}} \cdot e^{i \cdot \frac{2}{3} \pi} \][/tex]
Evaluate the magnitude:
[tex]\[ \left( \frac{3}{4} \right)^{\frac{2}{3}} \approx 0.641 \][/tex]
Evaluate the argument:
[tex]\[ e^{i \cdot \frac{2}{3} \pi} = \cos \left( \frac{2}{3} \pi \right) + i \sin \left( \frac{2}{3} \pi \right) \][/tex]
Using the values of [tex]\(\cos \left( \frac{2}{3} \pi \right)\)[/tex] and [tex]\(\sin \left( \frac{2}{3} \pi \right)\)[/tex]:
[tex]\[ \cos \left( \frac{2}{3} \pi \right) \approx -0.5 \quad \text{and} \quad \sin \left( \frac{2}{3} \pi \right) \approx 0.866 \][/tex]
Thus:
[tex]\[ e^{i \cdot \frac{2}{3} \pi} \approx -0.5 + 0.866i \][/tex]
Combining both parts:
[tex]\[ \left( \frac{3}{4} \right)^{\frac{2}{3}} \cdot \left( -0.5 + 0.866i \right) \][/tex]
The final result is:
[tex]\[ (-0.4127409061118282 + 0.7148882197477024i) \][/tex]
So, the result of [tex]\(\left( -\frac{3}{4} \right)^{\frac{2}{3}}\)[/tex] is:
[tex]\[ \boxed{(-0.4127409061118282 + 0.7148882197477024i)} \][/tex]
To deal with the fractional exponent of a negative base, we need to consider complex numbers because raising a negative number to a fractional power generally results in a complex number.
Given:
[tex]\[ \left( -\frac{3}{4} \right)^{\frac{2}{3}} \][/tex]
First, let's convert [tex]\(-\frac{3}{4}\)[/tex] into its polar form. The polar form of a complex number [tex]\(r e^{i \theta}\)[/tex] can be useful in evaluating exponents. Here, [tex]\(r\)[/tex] is the magnitude and [tex]\(\theta\)[/tex] is the argument (angle).
1. Calculate the magnitude:
[tex]\[ r = \left| -\frac{3}{4} \right| = \frac{3}{4} \][/tex]
2. Determine the argument:
[tex]\[ \theta = \pi \quad \text{(since the number is negative, its angle with the positive real axis is } \pi \text{ radians)} \][/tex]
Now, express [tex]\(-\frac{3}{4}\)[/tex] in its polar form:
[tex]\[ -\frac{3}{4} = \frac{3}{4} e^{i \pi} \][/tex]
Now we need to raise this to the power of [tex]\(\frac{2}{3}\)[/tex]:
[tex]\[ \left( \frac{3}{4} e^{i \pi} \right)^{\frac{2}{3}} \][/tex]
Using properties of exponents in polar form:
[tex]\[ \left( \frac{3}{4} \right)^{\frac{2}{3}} e^{i \pi \cdot \frac{2}{3}} \][/tex]
3. Calculate the magnitude part:
[tex]\[ \left( \frac{3}{4} \right)^{\frac{2}{3}} \][/tex]
4. Compute the argument part:
[tex]\[ e^{i \cdot \frac{2}{3} \pi} \][/tex]
Putting it all together:
[tex]\[ \left( \frac{3}{4} \right)^{\frac{2}{3}} \cdot e^{i \cdot \frac{2}{3} \pi} \][/tex]
Evaluate the magnitude:
[tex]\[ \left( \frac{3}{4} \right)^{\frac{2}{3}} \approx 0.641 \][/tex]
Evaluate the argument:
[tex]\[ e^{i \cdot \frac{2}{3} \pi} = \cos \left( \frac{2}{3} \pi \right) + i \sin \left( \frac{2}{3} \pi \right) \][/tex]
Using the values of [tex]\(\cos \left( \frac{2}{3} \pi \right)\)[/tex] and [tex]\(\sin \left( \frac{2}{3} \pi \right)\)[/tex]:
[tex]\[ \cos \left( \frac{2}{3} \pi \right) \approx -0.5 \quad \text{and} \quad \sin \left( \frac{2}{3} \pi \right) \approx 0.866 \][/tex]
Thus:
[tex]\[ e^{i \cdot \frac{2}{3} \pi} \approx -0.5 + 0.866i \][/tex]
Combining both parts:
[tex]\[ \left( \frac{3}{4} \right)^{\frac{2}{3}} \cdot \left( -0.5 + 0.866i \right) \][/tex]
The final result is:
[tex]\[ (-0.4127409061118282 + 0.7148882197477024i) \][/tex]
So, the result of [tex]\(\left( -\frac{3}{4} \right)^{\frac{2}{3}}\)[/tex] is:
[tex]\[ \boxed{(-0.4127409061118282 + 0.7148882197477024i)} \][/tex]
Thank you for trusting us with your questions. We're here to help you find accurate answers quickly and efficiently. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. We're glad you visited Westonci.ca. Return anytime for updated answers from our knowledgeable team.