At Westonci.ca, we provide reliable answers to your questions from a community of experts. Start exploring today! Experience the convenience of getting accurate answers to your questions from a dedicated community of professionals. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
To find the minimum and maximum values for the function [tex]\( k(x) = 10^x \)[/tex] within the given domain interval [tex]\([-3, 1]\)[/tex], we need to evaluate the function at the endpoints of the interval.
1. Identify the endpoints of the interval:
- The minimum value in the domain is [tex]\( x = -3 \)[/tex].
- The maximum value in the domain is [tex]\( x = 1 \)[/tex].
2. Evaluate the function at these points:
- For [tex]\( x = -3 \)[/tex]:
[tex]\[ k(-3) = 10^{-3} = \frac{1}{10^3} = \frac{1}{1000} = 0.001 \][/tex]
- For [tex]\( x = 1 \)[/tex]:
[tex]\[ k(1) = 10^1 = 10 \][/tex]
3. Determine the minimum and maximum values:
- The function attains its minimum value at [tex]\( x = -3 \)[/tex], which is
[tex]\[ k(-3) = 0.001 \][/tex]
- The function attains its maximum value at [tex]\( x = 1 \)[/tex], which is
[tex]\[ k(1) = 10 \][/tex]
Therefore, the minimum value of the function [tex]\( k(x) \)[/tex] over the given interval is [tex]\( 0.001 \)[/tex] and the maximum value is [tex]\( 10 \)[/tex].
Hence, the correct answer is:
- Minimum value [tex]\( = 0.001 \)[/tex]
- Maximum value [tex]\( = 10 \)[/tex]
So, the answer is:
[tex]\[ \boxed{\text{minimum value } = 0.001 \text{; maximum value } = 10} \][/tex]
1. Identify the endpoints of the interval:
- The minimum value in the domain is [tex]\( x = -3 \)[/tex].
- The maximum value in the domain is [tex]\( x = 1 \)[/tex].
2. Evaluate the function at these points:
- For [tex]\( x = -3 \)[/tex]:
[tex]\[ k(-3) = 10^{-3} = \frac{1}{10^3} = \frac{1}{1000} = 0.001 \][/tex]
- For [tex]\( x = 1 \)[/tex]:
[tex]\[ k(1) = 10^1 = 10 \][/tex]
3. Determine the minimum and maximum values:
- The function attains its minimum value at [tex]\( x = -3 \)[/tex], which is
[tex]\[ k(-3) = 0.001 \][/tex]
- The function attains its maximum value at [tex]\( x = 1 \)[/tex], which is
[tex]\[ k(1) = 10 \][/tex]
Therefore, the minimum value of the function [tex]\( k(x) \)[/tex] over the given interval is [tex]\( 0.001 \)[/tex] and the maximum value is [tex]\( 10 \)[/tex].
Hence, the correct answer is:
- Minimum value [tex]\( = 0.001 \)[/tex]
- Maximum value [tex]\( = 10 \)[/tex]
So, the answer is:
[tex]\[ \boxed{\text{minimum value } = 0.001 \text{; maximum value } = 10} \][/tex]
Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Find reliable answers at Westonci.ca. Visit us again for the latest updates and expert advice.