Westonci.ca is the premier destination for reliable answers to your questions, brought to you by a community of experts. Discover in-depth answers to your questions from a wide network of experts on our user-friendly Q&A platform. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
To solve the problem of finding the circumference of the circle given that a central angle measuring [tex]\(\frac{3\pi}{4}\)[/tex] radians intersects an arc of length 45 inches, follow these steps:
1. Understand the relationship between arc length, radius, and central angle:
- The formula that relates arc length ([tex]\(L\)[/tex]), radius ([tex]\(r\)[/tex]), and central angle ([tex]\(\theta\)[/tex]) in radians is:
[tex]\[ L = r \theta \][/tex]
2. Given values:
- Central angle [tex]\(\theta = \frac{3\pi}{4}\)[/tex] radians
- Arc length [tex]\(L = 45\)[/tex] inches
3. Calculate the radius (r) of the circle:
- Rearrange the formula for the arc length to solve for the radius:
[tex]\[ r = \frac{L}{\theta} \][/tex]
- Substitute the given values into the formula:
[tex]\[ r = \frac{45}{\frac{3\pi}{4}} \][/tex]
- Numerical substitution using [tex]\(\pi \approx 3.14\)[/tex]:
[tex]\[ r = \frac{45}{\frac{3 \times 3.14}{4}} = \frac{45}{2.355} \approx 19.10828025477707 \text{ inches} \][/tex]
4. Calculate the circumference of the circle:
- The formula for the circumference ([tex]\(C\)[/tex]) of a circle is:
[tex]\[ C = 2 \pi r \][/tex]
- Substitute the radius and [tex]\(\pi\)[/tex] into the formula:
[tex]\[ C = 2 \times 3.14 \times 19.10828025477707 \approx 120.00000000000001 \text{ inches} \][/tex]
5. Round the circumference to the nearest tenth:
- Rounded circumference = 120.0 inches
The circumference of the circle is 120.0 inches, rounded to the nearest tenth.
1. Understand the relationship between arc length, radius, and central angle:
- The formula that relates arc length ([tex]\(L\)[/tex]), radius ([tex]\(r\)[/tex]), and central angle ([tex]\(\theta\)[/tex]) in radians is:
[tex]\[ L = r \theta \][/tex]
2. Given values:
- Central angle [tex]\(\theta = \frac{3\pi}{4}\)[/tex] radians
- Arc length [tex]\(L = 45\)[/tex] inches
3. Calculate the radius (r) of the circle:
- Rearrange the formula for the arc length to solve for the radius:
[tex]\[ r = \frac{L}{\theta} \][/tex]
- Substitute the given values into the formula:
[tex]\[ r = \frac{45}{\frac{3\pi}{4}} \][/tex]
- Numerical substitution using [tex]\(\pi \approx 3.14\)[/tex]:
[tex]\[ r = \frac{45}{\frac{3 \times 3.14}{4}} = \frac{45}{2.355} \approx 19.10828025477707 \text{ inches} \][/tex]
4. Calculate the circumference of the circle:
- The formula for the circumference ([tex]\(C\)[/tex]) of a circle is:
[tex]\[ C = 2 \pi r \][/tex]
- Substitute the radius and [tex]\(\pi\)[/tex] into the formula:
[tex]\[ C = 2 \times 3.14 \times 19.10828025477707 \approx 120.00000000000001 \text{ inches} \][/tex]
5. Round the circumference to the nearest tenth:
- Rounded circumference = 120.0 inches
The circumference of the circle is 120.0 inches, rounded to the nearest tenth.
We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Stay curious and keep coming back to Westonci.ca for answers to all your burning questions.