Explore Westonci.ca, the premier Q&A site that helps you find precise answers to your questions, no matter the topic. Explore our Q&A platform to find reliable answers from a wide range of experts in different fields. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
To solve the problem of finding the circumference of the circle given that a central angle measuring [tex]\(\frac{3\pi}{4}\)[/tex] radians intersects an arc of length 45 inches, follow these steps:
1. Understand the relationship between arc length, radius, and central angle:
- The formula that relates arc length ([tex]\(L\)[/tex]), radius ([tex]\(r\)[/tex]), and central angle ([tex]\(\theta\)[/tex]) in radians is:
[tex]\[ L = r \theta \][/tex]
2. Given values:
- Central angle [tex]\(\theta = \frac{3\pi}{4}\)[/tex] radians
- Arc length [tex]\(L = 45\)[/tex] inches
3. Calculate the radius (r) of the circle:
- Rearrange the formula for the arc length to solve for the radius:
[tex]\[ r = \frac{L}{\theta} \][/tex]
- Substitute the given values into the formula:
[tex]\[ r = \frac{45}{\frac{3\pi}{4}} \][/tex]
- Numerical substitution using [tex]\(\pi \approx 3.14\)[/tex]:
[tex]\[ r = \frac{45}{\frac{3 \times 3.14}{4}} = \frac{45}{2.355} \approx 19.10828025477707 \text{ inches} \][/tex]
4. Calculate the circumference of the circle:
- The formula for the circumference ([tex]\(C\)[/tex]) of a circle is:
[tex]\[ C = 2 \pi r \][/tex]
- Substitute the radius and [tex]\(\pi\)[/tex] into the formula:
[tex]\[ C = 2 \times 3.14 \times 19.10828025477707 \approx 120.00000000000001 \text{ inches} \][/tex]
5. Round the circumference to the nearest tenth:
- Rounded circumference = 120.0 inches
The circumference of the circle is 120.0 inches, rounded to the nearest tenth.
1. Understand the relationship between arc length, radius, and central angle:
- The formula that relates arc length ([tex]\(L\)[/tex]), radius ([tex]\(r\)[/tex]), and central angle ([tex]\(\theta\)[/tex]) in radians is:
[tex]\[ L = r \theta \][/tex]
2. Given values:
- Central angle [tex]\(\theta = \frac{3\pi}{4}\)[/tex] radians
- Arc length [tex]\(L = 45\)[/tex] inches
3. Calculate the radius (r) of the circle:
- Rearrange the formula for the arc length to solve for the radius:
[tex]\[ r = \frac{L}{\theta} \][/tex]
- Substitute the given values into the formula:
[tex]\[ r = \frac{45}{\frac{3\pi}{4}} \][/tex]
- Numerical substitution using [tex]\(\pi \approx 3.14\)[/tex]:
[tex]\[ r = \frac{45}{\frac{3 \times 3.14}{4}} = \frac{45}{2.355} \approx 19.10828025477707 \text{ inches} \][/tex]
4. Calculate the circumference of the circle:
- The formula for the circumference ([tex]\(C\)[/tex]) of a circle is:
[tex]\[ C = 2 \pi r \][/tex]
- Substitute the radius and [tex]\(\pi\)[/tex] into the formula:
[tex]\[ C = 2 \times 3.14 \times 19.10828025477707 \approx 120.00000000000001 \text{ inches} \][/tex]
5. Round the circumference to the nearest tenth:
- Rounded circumference = 120.0 inches
The circumference of the circle is 120.0 inches, rounded to the nearest tenth.
We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Discover more at Westonci.ca. Return for the latest expert answers and updates on various topics.