Welcome to Westonci.ca, the ultimate question and answer platform. Get expert answers to your questions quickly and accurately. Discover in-depth answers to your questions from a wide network of experts on our user-friendly Q&A platform. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
Sure, let's solve the problem step-by-step.
You are given a model of the river bottom as:
[tex]\[ d = \frac{1}{5} |s - 250| - 50 \][/tex]
The harbormaster wants to place buoys where the river bottom is 20 feet below the surface, so let [tex]\( d = 20 \)[/tex].
Substitute [tex]\( d = 20 \)[/tex] into the equation and solve for [tex]\( s \)[/tex]:
[tex]\[ 20 = \frac{1}{5} |s - 250| - 50 \][/tex]
First, add 50 to both sides to isolate the absolute value term:
[tex]\[ 20 + 50 = \frac{1}{5} |s - 250| \][/tex]
[tex]\[ 70 = \frac{1}{5} |s - 250| \][/tex]
Next, multiply both sides by 5 to eliminate the fraction:
[tex]\[ 70 \times 5 = |s - 250| \][/tex]
[tex]\[ 350 = |s - 250| \][/tex]
This results in two possible equations, because the absolute value of a number [tex]\( |x| \)[/tex] equals x or -x:
[tex]\[ s - 250 = 350 \][/tex]
[tex]\[ s - 250 = -350 \][/tex]
Solve each equation separately:
For the first equation:
[tex]\[ s - 250 = 350 \][/tex]
[tex]\[ s = 350 + 250 \][/tex]
[tex]\[ s = 600 \][/tex]
For the second equation:
[tex]\[ s - 250 = -350 \][/tex]
[tex]\[ s = -350 + 250 \][/tex]
[tex]\[ s = -100 \][/tex]
Therefore, the horizontal distances from the left shore at which the buoys should be placed are:
[tex]\[ s = 600 \text{ feet} \][/tex]
[tex]\[ s = -100 \text{ feet} \][/tex]
Thus, the completed absolute value equation is:
[tex]\[ 20 = \frac{1}{5} |s - 250| - 50 \][/tex]
The horizontal distances at which the buoys should be placed are:
[tex]\[ s = 600 \][/tex]
[tex]\[ s = -100 \][/tex]
You are given a model of the river bottom as:
[tex]\[ d = \frac{1}{5} |s - 250| - 50 \][/tex]
The harbormaster wants to place buoys where the river bottom is 20 feet below the surface, so let [tex]\( d = 20 \)[/tex].
Substitute [tex]\( d = 20 \)[/tex] into the equation and solve for [tex]\( s \)[/tex]:
[tex]\[ 20 = \frac{1}{5} |s - 250| - 50 \][/tex]
First, add 50 to both sides to isolate the absolute value term:
[tex]\[ 20 + 50 = \frac{1}{5} |s - 250| \][/tex]
[tex]\[ 70 = \frac{1}{5} |s - 250| \][/tex]
Next, multiply both sides by 5 to eliminate the fraction:
[tex]\[ 70 \times 5 = |s - 250| \][/tex]
[tex]\[ 350 = |s - 250| \][/tex]
This results in two possible equations, because the absolute value of a number [tex]\( |x| \)[/tex] equals x or -x:
[tex]\[ s - 250 = 350 \][/tex]
[tex]\[ s - 250 = -350 \][/tex]
Solve each equation separately:
For the first equation:
[tex]\[ s - 250 = 350 \][/tex]
[tex]\[ s = 350 + 250 \][/tex]
[tex]\[ s = 600 \][/tex]
For the second equation:
[tex]\[ s - 250 = -350 \][/tex]
[tex]\[ s = -350 + 250 \][/tex]
[tex]\[ s = -100 \][/tex]
Therefore, the horizontal distances from the left shore at which the buoys should be placed are:
[tex]\[ s = 600 \text{ feet} \][/tex]
[tex]\[ s = -100 \text{ feet} \][/tex]
Thus, the completed absolute value equation is:
[tex]\[ 20 = \frac{1}{5} |s - 250| - 50 \][/tex]
The horizontal distances at which the buoys should be placed are:
[tex]\[ s = 600 \][/tex]
[tex]\[ s = -100 \][/tex]
Thank you for trusting us with your questions. We're here to help you find accurate answers quickly and efficiently. Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Thank you for trusting Westonci.ca. Don't forget to revisit us for more accurate and insightful answers.