Answered

Find the best answers to your questions at Westonci.ca, where experts and enthusiasts provide accurate, reliable information. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.

Given that [tex]$x^2 + 2x = 15$[/tex], it follows that [tex]$x = 3$[/tex].

A. Inductive, cogent.
B. Inductive, strong.
C. Deductive, valid.
D. Inductive, weak.


Sagot :

To solve the given equation [tex]\( x^2 + 2x = 15 \)[/tex] and determine the type of reasoning used, let's go through the steps and logic:

1. Rewrite the Equation:
Start with the given equation and move all terms to one side to get a standard quadratic form:
[tex]\[ x^2 + 2x - 15 = 0 \][/tex]

2. Identify the Coefficients:
In the quadratic equation [tex]\( ax^2 + bx + c = 0 \)[/tex], identify the coefficients [tex]\( a \)[/tex], [tex]\( b \)[/tex], and [tex]\( c \)[/tex]:
[tex]\[ a = 1, \quad b = 2, \quad c = -15 \][/tex]

3. Calculate the Discriminant:
The discriminant ([tex]\( \Delta \)[/tex]) of a quadratic equation is given by:
[tex]\[ \Delta = b^2 - 4ac \][/tex]
Substituting the values:
[tex]\[ \Delta = 2^2 - 4 \cdot 1 \cdot (-15) = 4 + 60 = 64 \][/tex]

4. Solve for the Roots:
The quadratic formula to find the roots [tex]\( x \)[/tex] of the equation is:
[tex]\[ x = \frac{-b \pm \sqrt{\Delta}}{2a} \][/tex]
Plugging in the values:
[tex]\[ x = \frac{-2 \pm \sqrt{64}}{2 \cdot 1} = \frac{-2 \pm 8}{2} \][/tex]
Calculate the two solutions:
[tex]\[ x_1 = \frac{-2 + 8}{2} = \frac{6}{2} = 3 \][/tex]
[tex]\[ x_2 = \frac{-2 - 8}{2} = \frac{-10}{2} = -5 \][/tex]

5. Check if [tex]\( x = 3 \)[/tex] is Indeed a Solution:
One of the solutions we found is [tex]\( x = 3 \)[/tex]. Thus, the statement [tex]\( x = 3 \)[/tex] is correct.

6. Determine the Type of Reasoning:
- Deductive Reasoning: This involves starting with a general statement and deriving a specific conclusion that logically follows from the general premises.
- In this problem, once we solve the equation exactly and find [tex]\( x = 3 \)[/tex], our conclusion follows directly and necessarily from the given premises without any assumptions or probabilities.

Given that the solution [tex]\( x = 3 \)[/tex] follows logically and necessarily from solving the quadratic equation, we conclude that the reasoning used is Deductive, valid.
We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.