Discover a wealth of knowledge at Westonci.ca, where experts provide answers to your most pressing questions. Join our platform to connect with experts ready to provide precise answers to your questions in different areas. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
Sure, let's solve the problem step-by-step:
Given information:
1. The population mean [tex]\(\mu = 84.1\)[/tex]
2. The population standard deviation [tex]\(\sigma = 42.7\)[/tex]
3. The sample size [tex]\(n = 18\)[/tex]
### Part (a)
What is the mean of the distribution of sample means?
The mean of the distribution of sample means, also called the expected value of the sample mean ([tex]\(\mu_{\bar{x}}\)[/tex]), is equal to the population mean ([tex]\(\mu\)[/tex]). This is a fundamental property of the sampling distribution of the sample mean.
So,
[tex]\[ \mu_{\bar{x}} = \mu = 84.1 \][/tex]
Therefore, the mean of the distribution of sample means is [tex]\(84.1\)[/tex].
### Part (b)
What is the standard deviation of the distribution of sample means?
The standard deviation of the distribution of sample means, also known as the standard error of the mean ([tex]\(\sigma_{\bar{x}}\)[/tex]), is calculated using the formula:
[tex]\[ \sigma_{\bar{x}} = \frac{\sigma}{\sqrt{n}} \][/tex]
where [tex]\(\sigma\)[/tex] is the population standard deviation, and [tex]\(n\)[/tex] is the sample size.
Plugging in the given values:
[tex]\[ \sigma_{\bar{x}} = \frac{42.7}{\sqrt{18}} \][/tex]
After computing the above expression, we get:
[tex]\[ \sigma_{\bar{x}} \approx 10.06 \][/tex]
Therefore, the standard deviation of the distribution of sample means, rounded to two decimal places, is [tex]\(10.06\)[/tex].
So, summarizing:
a. The mean of the distribution of sample means is [tex]\(84.1\)[/tex].
b. The standard deviation of the distribution of sample means is [tex]\(10.06\)[/tex].
Given information:
1. The population mean [tex]\(\mu = 84.1\)[/tex]
2. The population standard deviation [tex]\(\sigma = 42.7\)[/tex]
3. The sample size [tex]\(n = 18\)[/tex]
### Part (a)
What is the mean of the distribution of sample means?
The mean of the distribution of sample means, also called the expected value of the sample mean ([tex]\(\mu_{\bar{x}}\)[/tex]), is equal to the population mean ([tex]\(\mu\)[/tex]). This is a fundamental property of the sampling distribution of the sample mean.
So,
[tex]\[ \mu_{\bar{x}} = \mu = 84.1 \][/tex]
Therefore, the mean of the distribution of sample means is [tex]\(84.1\)[/tex].
### Part (b)
What is the standard deviation of the distribution of sample means?
The standard deviation of the distribution of sample means, also known as the standard error of the mean ([tex]\(\sigma_{\bar{x}}\)[/tex]), is calculated using the formula:
[tex]\[ \sigma_{\bar{x}} = \frac{\sigma}{\sqrt{n}} \][/tex]
where [tex]\(\sigma\)[/tex] is the population standard deviation, and [tex]\(n\)[/tex] is the sample size.
Plugging in the given values:
[tex]\[ \sigma_{\bar{x}} = \frac{42.7}{\sqrt{18}} \][/tex]
After computing the above expression, we get:
[tex]\[ \sigma_{\bar{x}} \approx 10.06 \][/tex]
Therefore, the standard deviation of the distribution of sample means, rounded to two decimal places, is [tex]\(10.06\)[/tex].
So, summarizing:
a. The mean of the distribution of sample means is [tex]\(84.1\)[/tex].
b. The standard deviation of the distribution of sample means is [tex]\(10.06\)[/tex].
Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. We're glad you visited Westonci.ca. Return anytime for updated answers from our knowledgeable team.