Welcome to Westonci.ca, where curiosity meets expertise. Ask any question and receive fast, accurate answers from our knowledgeable community. Get immediate and reliable solutions to your questions from a knowledgeable community of professionals on our platform. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
Sure, let's solve the problem step-by-step:
Given information:
1. The population mean [tex]\(\mu = 84.1\)[/tex]
2. The population standard deviation [tex]\(\sigma = 42.7\)[/tex]
3. The sample size [tex]\(n = 18\)[/tex]
### Part (a)
What is the mean of the distribution of sample means?
The mean of the distribution of sample means, also called the expected value of the sample mean ([tex]\(\mu_{\bar{x}}\)[/tex]), is equal to the population mean ([tex]\(\mu\)[/tex]). This is a fundamental property of the sampling distribution of the sample mean.
So,
[tex]\[ \mu_{\bar{x}} = \mu = 84.1 \][/tex]
Therefore, the mean of the distribution of sample means is [tex]\(84.1\)[/tex].
### Part (b)
What is the standard deviation of the distribution of sample means?
The standard deviation of the distribution of sample means, also known as the standard error of the mean ([tex]\(\sigma_{\bar{x}}\)[/tex]), is calculated using the formula:
[tex]\[ \sigma_{\bar{x}} = \frac{\sigma}{\sqrt{n}} \][/tex]
where [tex]\(\sigma\)[/tex] is the population standard deviation, and [tex]\(n\)[/tex] is the sample size.
Plugging in the given values:
[tex]\[ \sigma_{\bar{x}} = \frac{42.7}{\sqrt{18}} \][/tex]
After computing the above expression, we get:
[tex]\[ \sigma_{\bar{x}} \approx 10.06 \][/tex]
Therefore, the standard deviation of the distribution of sample means, rounded to two decimal places, is [tex]\(10.06\)[/tex].
So, summarizing:
a. The mean of the distribution of sample means is [tex]\(84.1\)[/tex].
b. The standard deviation of the distribution of sample means is [tex]\(10.06\)[/tex].
Given information:
1. The population mean [tex]\(\mu = 84.1\)[/tex]
2. The population standard deviation [tex]\(\sigma = 42.7\)[/tex]
3. The sample size [tex]\(n = 18\)[/tex]
### Part (a)
What is the mean of the distribution of sample means?
The mean of the distribution of sample means, also called the expected value of the sample mean ([tex]\(\mu_{\bar{x}}\)[/tex]), is equal to the population mean ([tex]\(\mu\)[/tex]). This is a fundamental property of the sampling distribution of the sample mean.
So,
[tex]\[ \mu_{\bar{x}} = \mu = 84.1 \][/tex]
Therefore, the mean of the distribution of sample means is [tex]\(84.1\)[/tex].
### Part (b)
What is the standard deviation of the distribution of sample means?
The standard deviation of the distribution of sample means, also known as the standard error of the mean ([tex]\(\sigma_{\bar{x}}\)[/tex]), is calculated using the formula:
[tex]\[ \sigma_{\bar{x}} = \frac{\sigma}{\sqrt{n}} \][/tex]
where [tex]\(\sigma\)[/tex] is the population standard deviation, and [tex]\(n\)[/tex] is the sample size.
Plugging in the given values:
[tex]\[ \sigma_{\bar{x}} = \frac{42.7}{\sqrt{18}} \][/tex]
After computing the above expression, we get:
[tex]\[ \sigma_{\bar{x}} \approx 10.06 \][/tex]
Therefore, the standard deviation of the distribution of sample means, rounded to two decimal places, is [tex]\(10.06\)[/tex].
So, summarizing:
a. The mean of the distribution of sample means is [tex]\(84.1\)[/tex].
b. The standard deviation of the distribution of sample means is [tex]\(10.06\)[/tex].
We hope this information was helpful. Feel free to return anytime for more answers to your questions and concerns. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Westonci.ca is your trusted source for answers. Visit us again to find more information on diverse topics.