Explore Westonci.ca, the leading Q&A site where experts provide accurate and helpful answers to all your questions. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
Certainly! Let's analyze the function [tex]\( y = a \sqrt{x-h} + k \)[/tex] and the effect of various transformations on its graph.
In the context of transformations of functions, we have four possible scenarios:
1. Vertical stretch by a factor of 8.
2. Vertical stretch by a factor of 2.
3. Vertical compression by a factor of 8.
4. Vertical compression by a factor of 2.
A vertical stretch or compression modifies the coefficient [tex]\( a \)[/tex] in the function [tex]\( y = a \sqrt{x-h} + k \)[/tex]. Specifically:
- A vertical stretch by a factor increases the value of [tex]\( a \)[/tex].
- A vertical compression by a factor decreases the value of [tex]\( a \)[/tex].
Given the problem statement, we know there's a vertical stretch by a factor of 8.
To determine the value of [tex]\( a \)[/tex] in this scenario:
- A vertical stretch by a factor of 8 means that [tex]\( a \)[/tex] should be multiplied by 8.
Given this information, the value of [tex]\( a \)[/tex] is confirmed to be [tex]\( 8 \)[/tex].
Thus, the final choice is [tex]\( \boxed{\text{stretch by a factor of 8}} \)[/tex].
In the context of transformations of functions, we have four possible scenarios:
1. Vertical stretch by a factor of 8.
2. Vertical stretch by a factor of 2.
3. Vertical compression by a factor of 8.
4. Vertical compression by a factor of 2.
A vertical stretch or compression modifies the coefficient [tex]\( a \)[/tex] in the function [tex]\( y = a \sqrt{x-h} + k \)[/tex]. Specifically:
- A vertical stretch by a factor increases the value of [tex]\( a \)[/tex].
- A vertical compression by a factor decreases the value of [tex]\( a \)[/tex].
Given the problem statement, we know there's a vertical stretch by a factor of 8.
To determine the value of [tex]\( a \)[/tex] in this scenario:
- A vertical stretch by a factor of 8 means that [tex]\( a \)[/tex] should be multiplied by 8.
Given this information, the value of [tex]\( a \)[/tex] is confirmed to be [tex]\( 8 \)[/tex].
Thus, the final choice is [tex]\( \boxed{\text{stretch by a factor of 8}} \)[/tex].
Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. We're here to help at Westonci.ca. Keep visiting for the best answers to your questions.