Find the information you're looking for at Westonci.ca, the trusted Q&A platform with a community of knowledgeable experts. Get the answers you need quickly and accurately from a dedicated community of experts on our Q&A platform. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
To find the sum of the first 12 terms ([tex]\( S_{12} \)[/tex]) of the given arithmetic series [tex]\(-5, -14, -23, -32, \ldots\)[/tex], we need to use the formula for the sum of the first [tex]\( n \)[/tex] terms of an arithmetic series:
[tex]\[ S_n = \frac{n}{2} \left( 2a + (n-1)d \right) \][/tex]
Where:
- [tex]\( S_n \)[/tex] is the sum of the first [tex]\( n \)[/tex] terms.
- [tex]\( n \)[/tex] is the number of terms.
- [tex]\( a \)[/tex] is the first term of the series.
- [tex]\( d \)[/tex] is the common difference between consecutive terms.
Let’s proceed step-by-step.
1. Identify the first term ([tex]\( a \)[/tex]):
The first term of the series is [tex]\( a = -5 \)[/tex].
2. Find the common difference ([tex]\( d \)[/tex]):
To find the common difference, subtract the first term from the second term:
[tex]\[ d = -14 - (-5) = -14 + 5 = -9 \][/tex]
3. Determine the number of terms ([tex]\( n \)[/tex]) to be summed:
We need to find the sum of the first 12 terms, so [tex]\( n = 12 \)[/tex].
4. Substitute [tex]\( a \)[/tex], [tex]\( d \)[/tex], and [tex]\( n \)[/tex] into the sum formula:
[tex]\[ S_{12} = \frac{12}{2} \left( 2(-5) + (12-1)(-9) \right) \][/tex]
5. Simplify inside the parentheses first:
[tex]\[ S_{12} = 6 \left( -10 + 11(-9) \right) \][/tex]
6. Calculate the expression inside the parentheses:
[tex]\[ -10 + 11(-9) = -10 - 99 = -109 \][/tex]
7. Now multiply by 6 to get the final sum:
[tex]\[ S_{12} = 6 \times (-109) = -654 \][/tex]
The sum of the first 12 terms of the series is [tex]\( S_{12} = -654 \)[/tex], which matches one of the given choices.
So, the correct answer is:
[tex]\[ \boxed{-654} \][/tex]
[tex]\[ S_n = \frac{n}{2} \left( 2a + (n-1)d \right) \][/tex]
Where:
- [tex]\( S_n \)[/tex] is the sum of the first [tex]\( n \)[/tex] terms.
- [tex]\( n \)[/tex] is the number of terms.
- [tex]\( a \)[/tex] is the first term of the series.
- [tex]\( d \)[/tex] is the common difference between consecutive terms.
Let’s proceed step-by-step.
1. Identify the first term ([tex]\( a \)[/tex]):
The first term of the series is [tex]\( a = -5 \)[/tex].
2. Find the common difference ([tex]\( d \)[/tex]):
To find the common difference, subtract the first term from the second term:
[tex]\[ d = -14 - (-5) = -14 + 5 = -9 \][/tex]
3. Determine the number of terms ([tex]\( n \)[/tex]) to be summed:
We need to find the sum of the first 12 terms, so [tex]\( n = 12 \)[/tex].
4. Substitute [tex]\( a \)[/tex], [tex]\( d \)[/tex], and [tex]\( n \)[/tex] into the sum formula:
[tex]\[ S_{12} = \frac{12}{2} \left( 2(-5) + (12-1)(-9) \right) \][/tex]
5. Simplify inside the parentheses first:
[tex]\[ S_{12} = 6 \left( -10 + 11(-9) \right) \][/tex]
6. Calculate the expression inside the parentheses:
[tex]\[ -10 + 11(-9) = -10 - 99 = -109 \][/tex]
7. Now multiply by 6 to get the final sum:
[tex]\[ S_{12} = 6 \times (-109) = -654 \][/tex]
The sum of the first 12 terms of the series is [tex]\( S_{12} = -654 \)[/tex], which matches one of the given choices.
So, the correct answer is:
[tex]\[ \boxed{-654} \][/tex]
We appreciate your visit. Hopefully, the answers you found were beneficial. Don't hesitate to come back for more information. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. We're glad you visited Westonci.ca. Return anytime for updated answers from our knowledgeable team.