At Westonci.ca, we connect you with experts who provide detailed answers to your most pressing questions. Start exploring now! Ask your questions and receive detailed answers from professionals with extensive experience in various fields. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
To find the sum of the first 12 terms ([tex]\( S_{12} \)[/tex]) of the given arithmetic series [tex]\(-5, -14, -23, -32, \ldots\)[/tex], we need to use the formula for the sum of the first [tex]\( n \)[/tex] terms of an arithmetic series:
[tex]\[ S_n = \frac{n}{2} \left( 2a + (n-1)d \right) \][/tex]
Where:
- [tex]\( S_n \)[/tex] is the sum of the first [tex]\( n \)[/tex] terms.
- [tex]\( n \)[/tex] is the number of terms.
- [tex]\( a \)[/tex] is the first term of the series.
- [tex]\( d \)[/tex] is the common difference between consecutive terms.
Let’s proceed step-by-step.
1. Identify the first term ([tex]\( a \)[/tex]):
The first term of the series is [tex]\( a = -5 \)[/tex].
2. Find the common difference ([tex]\( d \)[/tex]):
To find the common difference, subtract the first term from the second term:
[tex]\[ d = -14 - (-5) = -14 + 5 = -9 \][/tex]
3. Determine the number of terms ([tex]\( n \)[/tex]) to be summed:
We need to find the sum of the first 12 terms, so [tex]\( n = 12 \)[/tex].
4. Substitute [tex]\( a \)[/tex], [tex]\( d \)[/tex], and [tex]\( n \)[/tex] into the sum formula:
[tex]\[ S_{12} = \frac{12}{2} \left( 2(-5) + (12-1)(-9) \right) \][/tex]
5. Simplify inside the parentheses first:
[tex]\[ S_{12} = 6 \left( -10 + 11(-9) \right) \][/tex]
6. Calculate the expression inside the parentheses:
[tex]\[ -10 + 11(-9) = -10 - 99 = -109 \][/tex]
7. Now multiply by 6 to get the final sum:
[tex]\[ S_{12} = 6 \times (-109) = -654 \][/tex]
The sum of the first 12 terms of the series is [tex]\( S_{12} = -654 \)[/tex], which matches one of the given choices.
So, the correct answer is:
[tex]\[ \boxed{-654} \][/tex]
[tex]\[ S_n = \frac{n}{2} \left( 2a + (n-1)d \right) \][/tex]
Where:
- [tex]\( S_n \)[/tex] is the sum of the first [tex]\( n \)[/tex] terms.
- [tex]\( n \)[/tex] is the number of terms.
- [tex]\( a \)[/tex] is the first term of the series.
- [tex]\( d \)[/tex] is the common difference between consecutive terms.
Let’s proceed step-by-step.
1. Identify the first term ([tex]\( a \)[/tex]):
The first term of the series is [tex]\( a = -5 \)[/tex].
2. Find the common difference ([tex]\( d \)[/tex]):
To find the common difference, subtract the first term from the second term:
[tex]\[ d = -14 - (-5) = -14 + 5 = -9 \][/tex]
3. Determine the number of terms ([tex]\( n \)[/tex]) to be summed:
We need to find the sum of the first 12 terms, so [tex]\( n = 12 \)[/tex].
4. Substitute [tex]\( a \)[/tex], [tex]\( d \)[/tex], and [tex]\( n \)[/tex] into the sum formula:
[tex]\[ S_{12} = \frac{12}{2} \left( 2(-5) + (12-1)(-9) \right) \][/tex]
5. Simplify inside the parentheses first:
[tex]\[ S_{12} = 6 \left( -10 + 11(-9) \right) \][/tex]
6. Calculate the expression inside the parentheses:
[tex]\[ -10 + 11(-9) = -10 - 99 = -109 \][/tex]
7. Now multiply by 6 to get the final sum:
[tex]\[ S_{12} = 6 \times (-109) = -654 \][/tex]
The sum of the first 12 terms of the series is [tex]\( S_{12} = -654 \)[/tex], which matches one of the given choices.
So, the correct answer is:
[tex]\[ \boxed{-654} \][/tex]
We appreciate your time. Please come back anytime for the latest information and answers to your questions. Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Get the answers you need at Westonci.ca. Stay informed by returning for our latest expert advice.