Looking for reliable answers? Westonci.ca is the ultimate Q&A platform where experts share their knowledge on various topics. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.
Sagot :
To determine the number of moles of air inside the volleyball, we will use the Ideal Gas Law, represented by the equation:
[tex]\[ PV = nRT \][/tex]
where:
- [tex]\( P \)[/tex] is the pressure in kilopascals (kPa),
- [tex]\( V \)[/tex] is the volume in liters (L),
- [tex]\( n \)[/tex] is the number of moles,
- [tex]\( R \)[/tex] is the ideal gas constant in units of [tex]\( \text{L·kPa/(mol·K)} \)[/tex],
- [tex]\( T \)[/tex] is the temperature in Kelvin (K).
Given data:
- Temperature in Celsius: [tex]\(24.6^\circ \text{C}\)[/tex]
- Pressure in kilopascals: [tex]\(130.75 \text{ kPa}\)[/tex]
- Volume in liters: [tex]\(5.27 \text{ L}\)[/tex]
- Ideal gas constant: [tex]\(R = 8.314 \text{ L·kPa/(mol·K)}\)[/tex]
First, we need to convert the temperature from Celsius to Kelvin:
[tex]\[ T = 24.6 + 273.15 = 297.75 \text{ K} \][/tex]
Next, we rearrange the ideal gas law equation to solve for [tex]\( n \)[/tex] (number of moles):
[tex]\[ n = \frac{PV}{RT} \][/tex]
Substituting the given values into the equation:
[tex]\[ n = \frac{(130.75 \text{ kPa}) \times (5.27 \text{ L})}{(8.314 \text{ L·kPa/(mol·K)}) \times (297.75 \text{ K})} \][/tex]
From the calculation, we obtain:
[tex]\[ n \approx 0.2783495492918886 \text{ mol} \][/tex]
Rounding this to three significant figures, we get:
[tex]\[ n \approx 0.278 \text{ mol} \][/tex]
Therefore, the correct answer is:
[tex]\[ \boxed{0.278 \text{ mol}} \][/tex]
So, the correct option is:
A. 0.278 mol
[tex]\[ PV = nRT \][/tex]
where:
- [tex]\( P \)[/tex] is the pressure in kilopascals (kPa),
- [tex]\( V \)[/tex] is the volume in liters (L),
- [tex]\( n \)[/tex] is the number of moles,
- [tex]\( R \)[/tex] is the ideal gas constant in units of [tex]\( \text{L·kPa/(mol·K)} \)[/tex],
- [tex]\( T \)[/tex] is the temperature in Kelvin (K).
Given data:
- Temperature in Celsius: [tex]\(24.6^\circ \text{C}\)[/tex]
- Pressure in kilopascals: [tex]\(130.75 \text{ kPa}\)[/tex]
- Volume in liters: [tex]\(5.27 \text{ L}\)[/tex]
- Ideal gas constant: [tex]\(R = 8.314 \text{ L·kPa/(mol·K)}\)[/tex]
First, we need to convert the temperature from Celsius to Kelvin:
[tex]\[ T = 24.6 + 273.15 = 297.75 \text{ K} \][/tex]
Next, we rearrange the ideal gas law equation to solve for [tex]\( n \)[/tex] (number of moles):
[tex]\[ n = \frac{PV}{RT} \][/tex]
Substituting the given values into the equation:
[tex]\[ n = \frac{(130.75 \text{ kPa}) \times (5.27 \text{ L})}{(8.314 \text{ L·kPa/(mol·K)}) \times (297.75 \text{ K})} \][/tex]
From the calculation, we obtain:
[tex]\[ n \approx 0.2783495492918886 \text{ mol} \][/tex]
Rounding this to three significant figures, we get:
[tex]\[ n \approx 0.278 \text{ mol} \][/tex]
Therefore, the correct answer is:
[tex]\[ \boxed{0.278 \text{ mol}} \][/tex]
So, the correct option is:
A. 0.278 mol
Thank you for trusting us with your questions. We're here to help you find accurate answers quickly and efficiently. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Thank you for visiting Westonci.ca. Stay informed by coming back for more detailed answers.