Westonci.ca makes finding answers easy, with a community of experts ready to provide you with the information you seek. Get quick and reliable solutions to your questions from a community of seasoned experts on our user-friendly platform. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
To determine when the tangent function [tex]\(\tan \theta\)[/tex] is undefined, we need to look for the values of [tex]\(\theta\)[/tex] where the denominator of the tangent function [tex]\(\cos \theta\)[/tex] is equal to zero. Recall that [tex]\(\tan \theta = \frac{\sin \theta}{\cos \theta}\)[/tex], and a fraction is undefined whenever its denominator is zero.
1. The unit circle and cosine function:
- The cosine function [tex]\(\cos \theta\)[/tex] is zero at [tex]\(\theta = \frac{\pi}{2}\)[/tex] and [tex]\(\theta = \frac{3\pi}{2}\)[/tex], within the interval [tex]\(0 < \theta \leq 2\pi\)[/tex].
2. Values of [tex]\(\theta\)[/tex] where [tex]\(\cos \theta = 0\)[/tex]:
- At [tex]\(\theta = \frac{\pi}{2}\)[/tex], the cosine function [tex]\(\cos \theta\)[/tex] is zero.
- At [tex]\(\theta = \frac{3\pi}{2}\)[/tex], the cosine function [tex]\(\cos \theta\)[/tex] is zero.
Therefore, [tex]\(\tan \theta\)[/tex] is undefined exactly at [tex]\(\theta = \frac{\pi}{2}\)[/tex] and [tex]\(\theta = \frac{3\pi}{2}\)[/tex] because these are the points where [tex]\(\cos \theta = 0\)[/tex].
So, the correct answer is:
[tex]\[ \theta = \frac{\pi}{2} \text{ and } \theta = \frac{3\pi}{2} \][/tex]
1. The unit circle and cosine function:
- The cosine function [tex]\(\cos \theta\)[/tex] is zero at [tex]\(\theta = \frac{\pi}{2}\)[/tex] and [tex]\(\theta = \frac{3\pi}{2}\)[/tex], within the interval [tex]\(0 < \theta \leq 2\pi\)[/tex].
2. Values of [tex]\(\theta\)[/tex] where [tex]\(\cos \theta = 0\)[/tex]:
- At [tex]\(\theta = \frac{\pi}{2}\)[/tex], the cosine function [tex]\(\cos \theta\)[/tex] is zero.
- At [tex]\(\theta = \frac{3\pi}{2}\)[/tex], the cosine function [tex]\(\cos \theta\)[/tex] is zero.
Therefore, [tex]\(\tan \theta\)[/tex] is undefined exactly at [tex]\(\theta = \frac{\pi}{2}\)[/tex] and [tex]\(\theta = \frac{3\pi}{2}\)[/tex] because these are the points where [tex]\(\cos \theta = 0\)[/tex].
So, the correct answer is:
[tex]\[ \theta = \frac{\pi}{2} \text{ and } \theta = \frac{3\pi}{2} \][/tex]
Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Your questions are important to us at Westonci.ca. Visit again for expert answers and reliable information.