Discover answers to your questions with Westonci.ca, the leading Q&A platform that connects you with knowledgeable experts. Connect with professionals on our platform to receive accurate answers to your questions quickly and efficiently. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
Certainly! Let's solve the given system of equations to find the solutions for [tex]\( x \)[/tex] and [tex]\( y \)[/tex]. We will solve the following equations step-by-step:
1. [tex]\( x - 7 = \frac{2}{3}(y + 15) \)[/tex]
2. [tex]\( y = \frac{2}{3} x + 17 \)[/tex]
3. [tex]\( y - 7 = \frac{2}{3}(x + 15) \)[/tex]
4. [tex]\( 6x - 3y = -51 \)[/tex]
5. [tex]\( -\frac{2}{3} x + y = 17 \)[/tex]
### Step 1: Simplify the Equations
First, let's simplify each equation into a standard form [tex]\( ax + by = c \)[/tex].
1. [tex]\( x - 7 = \frac{2}{3}(y + 15) \)[/tex]
[tex]\[ x - 7 = \frac{2}{3}y + 10 \][/tex]
[tex]\[ \Rightarrow x - \frac{2}{3}y = 17 \quad \text{(after moving terms around)} \][/tex]
2. [tex]\( y = \frac{2}{3} x + 17 \)[/tex]
[tex]\[ y = \frac{2}{3}x + 17 \][/tex]
[tex]\[ \Rightarrow \frac{2}{3}x - y = -17 \][/tex]
3. [tex]\( y - 7 = \frac{2}{3}(x + 15) \)[/tex]
[tex]\[ y - 7 = \frac{2}{3}x + 10 \][/tex]
[tex]\[ y = \frac{2}{3}x + 17 \][/tex]
[tex]\[ \Rightarrow \frac{2}{3}x - y = -17 \][/tex]
4. [tex]\( 6x - 3y = -51 \)[/tex]
5. [tex]\( -\frac{2}{3} x + y = 17 \)[/tex]
### Step 2: Solve the Simplified System
Now we will solve the simplified system of equations. Notice the cases where destructive interference might help:
1. [tex]\( x - \frac{2}{3}y = 17 \)[/tex]
2. [tex]\( \frac{2}{3}x - y = -17 \)[/tex]
3. [tex]\( \frac{2}{3}x - y = -17 \)[/tex] (same as equation 2)
4. [tex]\( 6x - 3y = -51 \)[/tex]
5. [tex]\( -\frac{2}{3}x + y = 17 \)[/tex] (same as equation 2 but rearranged)
### Step 3: Identify Redundancies and Conflicts
Let's analyze if there are conflicts or redundancies in equations.
- Equation (2) and (3) are identical.
- Equation (5) is just equation (2) rephrased.
Now we can group the unique equations:
1. [tex]\( x - \frac{2}{3}y = 17 \)[/tex]
2. [tex]\( \frac{2}{3}x - y = -17 \)[/tex]
3. [tex]\( 6x - 3y = -51 \)[/tex]
### Step 4: Consistency Check
Let's check the consistency by considering these 3:
1. [tex]\( x - \frac{2}{3} y = 17 \)[/tex]
2. [tex]\( \frac{2}{3} x - y = -17 \)[/tex]
Let's multiply equation (2) by 3 to align coefficients:
[tex]\[ 2x - 3y = -51 \][/tex]
Now, we compare with equation (4):
[tex]\[ 6x - 3y = -51 \][/tex]
Divide the above by 3:
[tex]\[ 2x - y = -17 \][/tex]
This result compares with the previous derivation directly rules out all real numbers fulfilling these while maintaining consistency for all given conditions, indicating the computed result reflected all and having redundancy causing undefined intersection points across consistent equations.
### Conclusion
After examining the entire system of linear equations given, we determine there are no solutions [tex]\( x \)[/tex] and [tex]\( y \)[/tex] where all equations can be made true. This means the system of equations is inconsistent. No (x,y) pair satisfies all of them simultaneously.
Therefore, the final result is:
[tex]\[ \boxed{[]} \][/tex]
or there are no solutions as indicated.
1. [tex]\( x - 7 = \frac{2}{3}(y + 15) \)[/tex]
2. [tex]\( y = \frac{2}{3} x + 17 \)[/tex]
3. [tex]\( y - 7 = \frac{2}{3}(x + 15) \)[/tex]
4. [tex]\( 6x - 3y = -51 \)[/tex]
5. [tex]\( -\frac{2}{3} x + y = 17 \)[/tex]
### Step 1: Simplify the Equations
First, let's simplify each equation into a standard form [tex]\( ax + by = c \)[/tex].
1. [tex]\( x - 7 = \frac{2}{3}(y + 15) \)[/tex]
[tex]\[ x - 7 = \frac{2}{3}y + 10 \][/tex]
[tex]\[ \Rightarrow x - \frac{2}{3}y = 17 \quad \text{(after moving terms around)} \][/tex]
2. [tex]\( y = \frac{2}{3} x + 17 \)[/tex]
[tex]\[ y = \frac{2}{3}x + 17 \][/tex]
[tex]\[ \Rightarrow \frac{2}{3}x - y = -17 \][/tex]
3. [tex]\( y - 7 = \frac{2}{3}(x + 15) \)[/tex]
[tex]\[ y - 7 = \frac{2}{3}x + 10 \][/tex]
[tex]\[ y = \frac{2}{3}x + 17 \][/tex]
[tex]\[ \Rightarrow \frac{2}{3}x - y = -17 \][/tex]
4. [tex]\( 6x - 3y = -51 \)[/tex]
5. [tex]\( -\frac{2}{3} x + y = 17 \)[/tex]
### Step 2: Solve the Simplified System
Now we will solve the simplified system of equations. Notice the cases where destructive interference might help:
1. [tex]\( x - \frac{2}{3}y = 17 \)[/tex]
2. [tex]\( \frac{2}{3}x - y = -17 \)[/tex]
3. [tex]\( \frac{2}{3}x - y = -17 \)[/tex] (same as equation 2)
4. [tex]\( 6x - 3y = -51 \)[/tex]
5. [tex]\( -\frac{2}{3}x + y = 17 \)[/tex] (same as equation 2 but rearranged)
### Step 3: Identify Redundancies and Conflicts
Let's analyze if there are conflicts or redundancies in equations.
- Equation (2) and (3) are identical.
- Equation (5) is just equation (2) rephrased.
Now we can group the unique equations:
1. [tex]\( x - \frac{2}{3}y = 17 \)[/tex]
2. [tex]\( \frac{2}{3}x - y = -17 \)[/tex]
3. [tex]\( 6x - 3y = -51 \)[/tex]
### Step 4: Consistency Check
Let's check the consistency by considering these 3:
1. [tex]\( x - \frac{2}{3} y = 17 \)[/tex]
2. [tex]\( \frac{2}{3} x - y = -17 \)[/tex]
Let's multiply equation (2) by 3 to align coefficients:
[tex]\[ 2x - 3y = -51 \][/tex]
Now, we compare with equation (4):
[tex]\[ 6x - 3y = -51 \][/tex]
Divide the above by 3:
[tex]\[ 2x - y = -17 \][/tex]
This result compares with the previous derivation directly rules out all real numbers fulfilling these while maintaining consistency for all given conditions, indicating the computed result reflected all and having redundancy causing undefined intersection points across consistent equations.
### Conclusion
After examining the entire system of linear equations given, we determine there are no solutions [tex]\( x \)[/tex] and [tex]\( y \)[/tex] where all equations can be made true. This means the system of equations is inconsistent. No (x,y) pair satisfies all of them simultaneously.
Therefore, the final result is:
[tex]\[ \boxed{[]} \][/tex]
or there are no solutions as indicated.
We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.