Find the best answers to your questions at Westonci.ca, where experts and enthusiasts provide accurate, reliable information. Discover solutions to your questions from experienced professionals across multiple fields on our comprehensive Q&A platform. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.
Sagot :
To find the equation of the parabola with the given focus [tex]\((0, -2)\)[/tex] and directrix [tex]\(y = 0\)[/tex], let's follow these steps:
1. Identify the vertex of the parabola:
- The vertex of a parabola lies exactly midway between the focus and the directrix. Given that the focus is at [tex]\((0, -2)\)[/tex] and the directrix is the line [tex]\(y = 0\)[/tex], the vertex would be:
[tex]\[ \left( 0, \frac{-2 + 0}{2} \right) = (0, -1) \][/tex]
2. Determine the value of [tex]\(p\)[/tex]:
- The value of [tex]\(p\)[/tex] is the distance from the vertex to the focus (or from the vertex to the directrix, as both must be equal). Here, the distance between [tex]\((0, -1)\)[/tex] and [tex]\((0, -2)\)[/tex] is 1 unit. Since the focus is below the directrix, [tex]\(p\)[/tex] is negative:
[tex]\[ p = -1 \][/tex]
3. Write the equation in vertex form:
- The general form of the equation of a parabola that opens vertically is:
[tex]\[ y = \frac{1}{4p}(x - h)^2 + k \][/tex]
Here, [tex]\((h, k)\)[/tex] is the vertex, so [tex]\(h = 0\)[/tex] and [tex]\(k = -1\)[/tex].
- Substitute [tex]\(p = -1\)[/tex], [tex]\(h = 0\)[/tex], and [tex]\(k = -1\)[/tex]:
[tex]\[ y = \frac{1}{4(-1)}(x - 0)^2 - 1 \][/tex]
Simplify:
[tex]\[ y = -\frac{1}{4}x^2 - 1 \][/tex]
Hence, the detailed solution for the given parabola is as follows:
- The value of [tex]\(p\)[/tex] is [tex]\(\boxed{-1}\)[/tex].
- The vertex of the parabola is the point [tex]\((\boxed{0}, \boxed{-1})\)[/tex].
- The equation of this parabola in vertex form is:
[tex]\[ y = \boxed{-\frac{1}{4}}x^2 - 1 \][/tex]
1. Identify the vertex of the parabola:
- The vertex of a parabola lies exactly midway between the focus and the directrix. Given that the focus is at [tex]\((0, -2)\)[/tex] and the directrix is the line [tex]\(y = 0\)[/tex], the vertex would be:
[tex]\[ \left( 0, \frac{-2 + 0}{2} \right) = (0, -1) \][/tex]
2. Determine the value of [tex]\(p\)[/tex]:
- The value of [tex]\(p\)[/tex] is the distance from the vertex to the focus (or from the vertex to the directrix, as both must be equal). Here, the distance between [tex]\((0, -1)\)[/tex] and [tex]\((0, -2)\)[/tex] is 1 unit. Since the focus is below the directrix, [tex]\(p\)[/tex] is negative:
[tex]\[ p = -1 \][/tex]
3. Write the equation in vertex form:
- The general form of the equation of a parabola that opens vertically is:
[tex]\[ y = \frac{1}{4p}(x - h)^2 + k \][/tex]
Here, [tex]\((h, k)\)[/tex] is the vertex, so [tex]\(h = 0\)[/tex] and [tex]\(k = -1\)[/tex].
- Substitute [tex]\(p = -1\)[/tex], [tex]\(h = 0\)[/tex], and [tex]\(k = -1\)[/tex]:
[tex]\[ y = \frac{1}{4(-1)}(x - 0)^2 - 1 \][/tex]
Simplify:
[tex]\[ y = -\frac{1}{4}x^2 - 1 \][/tex]
Hence, the detailed solution for the given parabola is as follows:
- The value of [tex]\(p\)[/tex] is [tex]\(\boxed{-1}\)[/tex].
- The vertex of the parabola is the point [tex]\((\boxed{0}, \boxed{-1})\)[/tex].
- The equation of this parabola in vertex form is:
[tex]\[ y = \boxed{-\frac{1}{4}}x^2 - 1 \][/tex]
Thank you for choosing our service. We're dedicated to providing the best answers for all your questions. Visit us again. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. We're glad you visited Westonci.ca. Return anytime for updated answers from our knowledgeable team.