Explore Westonci.ca, the leading Q&A site where experts provide accurate and helpful answers to all your questions. Join our platform to get reliable answers to your questions from a knowledgeable community of experts. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
To approximate the value of [tex]\(\sqrt[8]{550}\)[/tex] using Newton's method and achieve an accuracy correct to eight decimal places, let's proceed with the following steps:
1. Define the function and its derivative:
We need to define a function whose root we are trying to find. In this case, we are solving for [tex]\(x\)[/tex] in the equation:
[tex]\[ f(x) = x^8 - 550 \][/tex]
The derivative of the function [tex]\(f(x)\)[/tex] is:
[tex]\[ f'(x) = 8x^7 \][/tex]
2. Initial guess:
We need to make an initial guess for [tex]\(x\)[/tex]. Let's choose [tex]\(x_0 = 2.0\)[/tex].
3. Newton's iteration formula:
Newton's method uses the following iterative process to approximate the root:
[tex]\[ x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)} \][/tex]
where [tex]\(x_n\)[/tex] is the current approximation, and [tex]\(x_{n+1}\)[/tex] is the next approximation.
4. Iteration process:
Repeat the iterative process until the difference between consecutive approximations is less than the desired tolerance. For eight decimal places, a tolerance of [tex]\(1 \times 10^{-9}\)[/tex] is appropriate.
5. Convergence:
Continue the iterations until [tex]\(|x_{n+1} - x_n| < 1 \times 10^{-9}\)[/tex].
Let's go through the Newton's iteration steps in detail:
1. Define the functions:
[tex]\[ f(x) = x^8 - 550, \quad f'(x) = 8x^7 \][/tex]
2. Initial guess:
[tex]\[ x_0 = 2.0 \][/tex]
3. Iterative calculations (we will describe a few iterations):
First iteration:
[tex]\[ x_1 = x_0 - \frac{f(x_0)}{f'(x_0)} = 2.0 - \frac{(2.0)^8 - 550}{8 \times (2.0)^7} = 2.0 - \frac{256 - 550}{2048} = 2.0 + 0.1435546875 \approx 2.1435546875 \][/tex]
Second iteration:
[tex]\[ x_2 = x_1 - \frac{f(x_1)}{f'(x_1)} = 2.1435546875 - \frac{(2.1435546875)^8 - 550}{8 \times (2.1435546875)^7} \][/tex]
Calculating the values, we get:
[tex]\[ f(2.1435546875) \approx (2.1435546875)^8 - 550 \approx 775.219 - 550 = 225.219 \][/tex]
[tex]\[ f'(2.1435546875) \approx 8 \times (2.1435546875)^7 \approx 8 \times 163.83 = 1310.64 \][/tex]
[tex]\[ x_2 \approx 2.1435546875 - \frac{225.219}{1310.64} \approx 2.1435546875 - 0.171769 \approx 2.168233 \][/tex]
Continue iterating in a similar fashion until the approximation meets the desired tolerance level.
For the sake of brevity, after several iterations following the same pattern as outlined, the root converges to approximately:
[tex]\[ \sqrt[8]{550} \approx 2.2006214214590667 \][/tex]
Therefore, using Newton's method, the value of [tex]\(\sqrt[8]{550}\)[/tex] approximated to eight decimal places is:
[tex]\[ \boxed{2.20062142} \][/tex]
1. Define the function and its derivative:
We need to define a function whose root we are trying to find. In this case, we are solving for [tex]\(x\)[/tex] in the equation:
[tex]\[ f(x) = x^8 - 550 \][/tex]
The derivative of the function [tex]\(f(x)\)[/tex] is:
[tex]\[ f'(x) = 8x^7 \][/tex]
2. Initial guess:
We need to make an initial guess for [tex]\(x\)[/tex]. Let's choose [tex]\(x_0 = 2.0\)[/tex].
3. Newton's iteration formula:
Newton's method uses the following iterative process to approximate the root:
[tex]\[ x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)} \][/tex]
where [tex]\(x_n\)[/tex] is the current approximation, and [tex]\(x_{n+1}\)[/tex] is the next approximation.
4. Iteration process:
Repeat the iterative process until the difference between consecutive approximations is less than the desired tolerance. For eight decimal places, a tolerance of [tex]\(1 \times 10^{-9}\)[/tex] is appropriate.
5. Convergence:
Continue the iterations until [tex]\(|x_{n+1} - x_n| < 1 \times 10^{-9}\)[/tex].
Let's go through the Newton's iteration steps in detail:
1. Define the functions:
[tex]\[ f(x) = x^8 - 550, \quad f'(x) = 8x^7 \][/tex]
2. Initial guess:
[tex]\[ x_0 = 2.0 \][/tex]
3. Iterative calculations (we will describe a few iterations):
First iteration:
[tex]\[ x_1 = x_0 - \frac{f(x_0)}{f'(x_0)} = 2.0 - \frac{(2.0)^8 - 550}{8 \times (2.0)^7} = 2.0 - \frac{256 - 550}{2048} = 2.0 + 0.1435546875 \approx 2.1435546875 \][/tex]
Second iteration:
[tex]\[ x_2 = x_1 - \frac{f(x_1)}{f'(x_1)} = 2.1435546875 - \frac{(2.1435546875)^8 - 550}{8 \times (2.1435546875)^7} \][/tex]
Calculating the values, we get:
[tex]\[ f(2.1435546875) \approx (2.1435546875)^8 - 550 \approx 775.219 - 550 = 225.219 \][/tex]
[tex]\[ f'(2.1435546875) \approx 8 \times (2.1435546875)^7 \approx 8 \times 163.83 = 1310.64 \][/tex]
[tex]\[ x_2 \approx 2.1435546875 - \frac{225.219}{1310.64} \approx 2.1435546875 - 0.171769 \approx 2.168233 \][/tex]
Continue iterating in a similar fashion until the approximation meets the desired tolerance level.
For the sake of brevity, after several iterations following the same pattern as outlined, the root converges to approximately:
[tex]\[ \sqrt[8]{550} \approx 2.2006214214590667 \][/tex]
Therefore, using Newton's method, the value of [tex]\(\sqrt[8]{550}\)[/tex] approximated to eight decimal places is:
[tex]\[ \boxed{2.20062142} \][/tex]
We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Thank you for choosing Westonci.ca as your information source. We look forward to your next visit.