At Westonci.ca, we provide clear, reliable answers to all your questions. Join our vibrant community and get the solutions you need. Our platform provides a seamless experience for finding reliable answers from a knowledgeable network of professionals. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
To find the value of the fourth term in a geometric sequence where the first term [tex]\( a_1 = 15 \)[/tex] and the common ratio [tex]\( r = \frac{1}{3} \)[/tex], we can use the formula for the [tex]\( n \)[/tex]-th term of a geometric sequence:
[tex]\[ a_n = a_1 \cdot r^{n-1} \][/tex]
For the fourth term ([tex]\( n = 4 \)[/tex]):
[tex]\[ a_4 = a_1 \cdot r^{4-1} = a_1 \cdot r^3 \][/tex]
Given [tex]\( a_1 = 15 \)[/tex] and [tex]\( r = \frac{1}{3} \)[/tex], we substitute these values into the formula:
[tex]\[ a_4 = 15 \cdot \left( \frac{1}{3} \right)^3 \][/tex]
Next, calculate [tex]\( \left( \frac{1}{3} \right)^3 \)[/tex]:
[tex]\[ \left( \frac{1}{3} \right)^3 = \frac{1}{3} \cdot \frac{1}{3} \cdot \frac{1}{3} = \frac{1}{27} \][/tex]
Now multiply this result by the first term:
[tex]\[ a_4 = 15 \cdot \frac{1}{27} \][/tex]
To simplify the multiplication:
[tex]\[ 15 \cdot \frac{1}{27} = \frac{15}{27} = \frac{5}{9} \][/tex]
Therefore, the fourth term expressed as a fraction is:
[tex]\[ \boxed{\frac{5}{9}} \][/tex]
[tex]\[ a_n = a_1 \cdot r^{n-1} \][/tex]
For the fourth term ([tex]\( n = 4 \)[/tex]):
[tex]\[ a_4 = a_1 \cdot r^{4-1} = a_1 \cdot r^3 \][/tex]
Given [tex]\( a_1 = 15 \)[/tex] and [tex]\( r = \frac{1}{3} \)[/tex], we substitute these values into the formula:
[tex]\[ a_4 = 15 \cdot \left( \frac{1}{3} \right)^3 \][/tex]
Next, calculate [tex]\( \left( \frac{1}{3} \right)^3 \)[/tex]:
[tex]\[ \left( \frac{1}{3} \right)^3 = \frac{1}{3} \cdot \frac{1}{3} \cdot \frac{1}{3} = \frac{1}{27} \][/tex]
Now multiply this result by the first term:
[tex]\[ a_4 = 15 \cdot \frac{1}{27} \][/tex]
To simplify the multiplication:
[tex]\[ 15 \cdot \frac{1}{27} = \frac{15}{27} = \frac{5}{9} \][/tex]
Therefore, the fourth term expressed as a fraction is:
[tex]\[ \boxed{\frac{5}{9}} \][/tex]
Thank you for your visit. We are dedicated to helping you find the information you need, whenever you need it. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Your questions are important to us at Westonci.ca. Visit again for expert answers and reliable information.