Welcome to Westonci.ca, where you can find answers to all your questions from a community of experienced professionals. Join our platform to get reliable answers to your questions from a knowledgeable community of experts. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
To find [tex]\( x_3 \)[/tex], the third approximation to the solution of the equation [tex]\(\frac{2}{x} - x^2 + 1 = 0\)[/tex] using Newton's method, we follow these steps:
1. Define the function and its derivative:
[tex]\[ f(x) = \frac{2}{x} - x^2 + 1 \][/tex]
The derivative of [tex]\( f(x) \)[/tex] is:
[tex]\[ f'(x) = -\frac{2}{x^2} - 2x \][/tex]
2. Initial approximation:
[tex]\[ x_1 = 2 \][/tex]
3. Iteration 1 to find [tex]\( x_2 \)[/tex]:
Newton's method formula is given by:
[tex]\[ x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)} \][/tex]
For [tex]\( x = x_1 \)[/tex]:
[tex]\[ f(x_1) = \frac{2}{2} - 2^2 + 1 = 1 - 4 + 1 = -2 \][/tex]
[tex]\[ f'(x_1) = -\frac{2}{2^2} - 2 \cdot 2 = -\frac{2}{4} - 4 = -0.5 - 4 = -4.5 \][/tex]
Now, calculate [tex]\( x_2 \)[/tex]:
[tex]\[ x_2 = x_1 - \frac{f(x_1)}{f'(x_1)} = 2 - \frac{-2}{-4.5} = 2 - \frac{2}{4.5} = 2 - 0.4444 \approx 1.5556 \][/tex]
4. Iteration 2 to find [tex]\( x_3 \)[/tex]:
For [tex]\( x = x_2 \)[/tex]:
[tex]\[ f(x_2) = \frac{2}{1.5556} - (1.5556)^2 + 1 \approx 1.2862 - 2.4203 + 1 \approx -0.1341 \][/tex]
[tex]\[ f'(x_2) = -\frac{2}{(1.5556)^2} - 2 \cdot 1.5556 \approx -\frac{2}{2.4203} - 3.1112 \approx -0.8263 - 3.1112 = -3.9375 \][/tex]
Now, calculate [tex]\( x_3 \)[/tex]:
[tex]\[ x_3 = x_2 - \frac{f(x_2)}{f'(x_2)} = 1.5556 - \frac{-0.1341}{-3.9375} \approx 1.5556 - 0.0341 \approx 1.5215 \][/tex]
So, the third approximation [tex]\( x_3 \)[/tex] to the solution of the equation [tex]\(\frac{2}{x} - x^2 + 1 = 0\)[/tex] is:
[tex]\[ x_3 \approx 1.5215 \][/tex]
This is the result rounded to four decimal places.
1. Define the function and its derivative:
[tex]\[ f(x) = \frac{2}{x} - x^2 + 1 \][/tex]
The derivative of [tex]\( f(x) \)[/tex] is:
[tex]\[ f'(x) = -\frac{2}{x^2} - 2x \][/tex]
2. Initial approximation:
[tex]\[ x_1 = 2 \][/tex]
3. Iteration 1 to find [tex]\( x_2 \)[/tex]:
Newton's method formula is given by:
[tex]\[ x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)} \][/tex]
For [tex]\( x = x_1 \)[/tex]:
[tex]\[ f(x_1) = \frac{2}{2} - 2^2 + 1 = 1 - 4 + 1 = -2 \][/tex]
[tex]\[ f'(x_1) = -\frac{2}{2^2} - 2 \cdot 2 = -\frac{2}{4} - 4 = -0.5 - 4 = -4.5 \][/tex]
Now, calculate [tex]\( x_2 \)[/tex]:
[tex]\[ x_2 = x_1 - \frac{f(x_1)}{f'(x_1)} = 2 - \frac{-2}{-4.5} = 2 - \frac{2}{4.5} = 2 - 0.4444 \approx 1.5556 \][/tex]
4. Iteration 2 to find [tex]\( x_3 \)[/tex]:
For [tex]\( x = x_2 \)[/tex]:
[tex]\[ f(x_2) = \frac{2}{1.5556} - (1.5556)^2 + 1 \approx 1.2862 - 2.4203 + 1 \approx -0.1341 \][/tex]
[tex]\[ f'(x_2) = -\frac{2}{(1.5556)^2} - 2 \cdot 1.5556 \approx -\frac{2}{2.4203} - 3.1112 \approx -0.8263 - 3.1112 = -3.9375 \][/tex]
Now, calculate [tex]\( x_3 \)[/tex]:
[tex]\[ x_3 = x_2 - \frac{f(x_2)}{f'(x_2)} = 1.5556 - \frac{-0.1341}{-3.9375} \approx 1.5556 - 0.0341 \approx 1.5215 \][/tex]
So, the third approximation [tex]\( x_3 \)[/tex] to the solution of the equation [tex]\(\frac{2}{x} - x^2 + 1 = 0\)[/tex] is:
[tex]\[ x_3 \approx 1.5215 \][/tex]
This is the result rounded to four decimal places.
Thank you for visiting our platform. We hope you found the answers you were looking for. Come back anytime you need more information. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Thank you for using Westonci.ca. Come back for more in-depth answers to all your queries.