Westonci.ca is the best place to get answers to your questions, provided by a community of experienced and knowledgeable experts. Get detailed and precise answers to your questions from a dedicated community of experts on our Q&A platform. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.
Sagot :
To find [tex]\( x_3 \)[/tex], the third approximation to the solution of the equation [tex]\(\frac{2}{x} - x^2 + 1 = 0\)[/tex] using Newton's method, we follow these steps:
1. Define the function and its derivative:
[tex]\[ f(x) = \frac{2}{x} - x^2 + 1 \][/tex]
The derivative of [tex]\( f(x) \)[/tex] is:
[tex]\[ f'(x) = -\frac{2}{x^2} - 2x \][/tex]
2. Initial approximation:
[tex]\[ x_1 = 2 \][/tex]
3. Iteration 1 to find [tex]\( x_2 \)[/tex]:
Newton's method formula is given by:
[tex]\[ x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)} \][/tex]
For [tex]\( x = x_1 \)[/tex]:
[tex]\[ f(x_1) = \frac{2}{2} - 2^2 + 1 = 1 - 4 + 1 = -2 \][/tex]
[tex]\[ f'(x_1) = -\frac{2}{2^2} - 2 \cdot 2 = -\frac{2}{4} - 4 = -0.5 - 4 = -4.5 \][/tex]
Now, calculate [tex]\( x_2 \)[/tex]:
[tex]\[ x_2 = x_1 - \frac{f(x_1)}{f'(x_1)} = 2 - \frac{-2}{-4.5} = 2 - \frac{2}{4.5} = 2 - 0.4444 \approx 1.5556 \][/tex]
4. Iteration 2 to find [tex]\( x_3 \)[/tex]:
For [tex]\( x = x_2 \)[/tex]:
[tex]\[ f(x_2) = \frac{2}{1.5556} - (1.5556)^2 + 1 \approx 1.2862 - 2.4203 + 1 \approx -0.1341 \][/tex]
[tex]\[ f'(x_2) = -\frac{2}{(1.5556)^2} - 2 \cdot 1.5556 \approx -\frac{2}{2.4203} - 3.1112 \approx -0.8263 - 3.1112 = -3.9375 \][/tex]
Now, calculate [tex]\( x_3 \)[/tex]:
[tex]\[ x_3 = x_2 - \frac{f(x_2)}{f'(x_2)} = 1.5556 - \frac{-0.1341}{-3.9375} \approx 1.5556 - 0.0341 \approx 1.5215 \][/tex]
So, the third approximation [tex]\( x_3 \)[/tex] to the solution of the equation [tex]\(\frac{2}{x} - x^2 + 1 = 0\)[/tex] is:
[tex]\[ x_3 \approx 1.5215 \][/tex]
This is the result rounded to four decimal places.
1. Define the function and its derivative:
[tex]\[ f(x) = \frac{2}{x} - x^2 + 1 \][/tex]
The derivative of [tex]\( f(x) \)[/tex] is:
[tex]\[ f'(x) = -\frac{2}{x^2} - 2x \][/tex]
2. Initial approximation:
[tex]\[ x_1 = 2 \][/tex]
3. Iteration 1 to find [tex]\( x_2 \)[/tex]:
Newton's method formula is given by:
[tex]\[ x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)} \][/tex]
For [tex]\( x = x_1 \)[/tex]:
[tex]\[ f(x_1) = \frac{2}{2} - 2^2 + 1 = 1 - 4 + 1 = -2 \][/tex]
[tex]\[ f'(x_1) = -\frac{2}{2^2} - 2 \cdot 2 = -\frac{2}{4} - 4 = -0.5 - 4 = -4.5 \][/tex]
Now, calculate [tex]\( x_2 \)[/tex]:
[tex]\[ x_2 = x_1 - \frac{f(x_1)}{f'(x_1)} = 2 - \frac{-2}{-4.5} = 2 - \frac{2}{4.5} = 2 - 0.4444 \approx 1.5556 \][/tex]
4. Iteration 2 to find [tex]\( x_3 \)[/tex]:
For [tex]\( x = x_2 \)[/tex]:
[tex]\[ f(x_2) = \frac{2}{1.5556} - (1.5556)^2 + 1 \approx 1.2862 - 2.4203 + 1 \approx -0.1341 \][/tex]
[tex]\[ f'(x_2) = -\frac{2}{(1.5556)^2} - 2 \cdot 1.5556 \approx -\frac{2}{2.4203} - 3.1112 \approx -0.8263 - 3.1112 = -3.9375 \][/tex]
Now, calculate [tex]\( x_3 \)[/tex]:
[tex]\[ x_3 = x_2 - \frac{f(x_2)}{f'(x_2)} = 1.5556 - \frac{-0.1341}{-3.9375} \approx 1.5556 - 0.0341 \approx 1.5215 \][/tex]
So, the third approximation [tex]\( x_3 \)[/tex] to the solution of the equation [tex]\(\frac{2}{x} - x^2 + 1 = 0\)[/tex] is:
[tex]\[ x_3 \approx 1.5215 \][/tex]
This is the result rounded to four decimal places.
We hope our answers were useful. Return anytime for more information and answers to any other questions you have. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Your questions are important to us at Westonci.ca. Visit again for expert answers and reliable information.