Discover the answers you need at Westonci.ca, a dynamic Q&A platform where knowledge is shared freely by a community of experts. Discover the answers you need from a community of experts ready to help you with their knowledge and experience in various fields. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.
Sagot :
To find [tex]\( x_3 \)[/tex], the third approximation to the solution of the equation [tex]\(\frac{2}{x} - x^2 + 1 = 0\)[/tex] using Newton's method, we follow these steps:
1. Define the function and its derivative:
[tex]\[ f(x) = \frac{2}{x} - x^2 + 1 \][/tex]
The derivative of [tex]\( f(x) \)[/tex] is:
[tex]\[ f'(x) = -\frac{2}{x^2} - 2x \][/tex]
2. Initial approximation:
[tex]\[ x_1 = 2 \][/tex]
3. Iteration 1 to find [tex]\( x_2 \)[/tex]:
Newton's method formula is given by:
[tex]\[ x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)} \][/tex]
For [tex]\( x = x_1 \)[/tex]:
[tex]\[ f(x_1) = \frac{2}{2} - 2^2 + 1 = 1 - 4 + 1 = -2 \][/tex]
[tex]\[ f'(x_1) = -\frac{2}{2^2} - 2 \cdot 2 = -\frac{2}{4} - 4 = -0.5 - 4 = -4.5 \][/tex]
Now, calculate [tex]\( x_2 \)[/tex]:
[tex]\[ x_2 = x_1 - \frac{f(x_1)}{f'(x_1)} = 2 - \frac{-2}{-4.5} = 2 - \frac{2}{4.5} = 2 - 0.4444 \approx 1.5556 \][/tex]
4. Iteration 2 to find [tex]\( x_3 \)[/tex]:
For [tex]\( x = x_2 \)[/tex]:
[tex]\[ f(x_2) = \frac{2}{1.5556} - (1.5556)^2 + 1 \approx 1.2862 - 2.4203 + 1 \approx -0.1341 \][/tex]
[tex]\[ f'(x_2) = -\frac{2}{(1.5556)^2} - 2 \cdot 1.5556 \approx -\frac{2}{2.4203} - 3.1112 \approx -0.8263 - 3.1112 = -3.9375 \][/tex]
Now, calculate [tex]\( x_3 \)[/tex]:
[tex]\[ x_3 = x_2 - \frac{f(x_2)}{f'(x_2)} = 1.5556 - \frac{-0.1341}{-3.9375} \approx 1.5556 - 0.0341 \approx 1.5215 \][/tex]
So, the third approximation [tex]\( x_3 \)[/tex] to the solution of the equation [tex]\(\frac{2}{x} - x^2 + 1 = 0\)[/tex] is:
[tex]\[ x_3 \approx 1.5215 \][/tex]
This is the result rounded to four decimal places.
1. Define the function and its derivative:
[tex]\[ f(x) = \frac{2}{x} - x^2 + 1 \][/tex]
The derivative of [tex]\( f(x) \)[/tex] is:
[tex]\[ f'(x) = -\frac{2}{x^2} - 2x \][/tex]
2. Initial approximation:
[tex]\[ x_1 = 2 \][/tex]
3. Iteration 1 to find [tex]\( x_2 \)[/tex]:
Newton's method formula is given by:
[tex]\[ x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)} \][/tex]
For [tex]\( x = x_1 \)[/tex]:
[tex]\[ f(x_1) = \frac{2}{2} - 2^2 + 1 = 1 - 4 + 1 = -2 \][/tex]
[tex]\[ f'(x_1) = -\frac{2}{2^2} - 2 \cdot 2 = -\frac{2}{4} - 4 = -0.5 - 4 = -4.5 \][/tex]
Now, calculate [tex]\( x_2 \)[/tex]:
[tex]\[ x_2 = x_1 - \frac{f(x_1)}{f'(x_1)} = 2 - \frac{-2}{-4.5} = 2 - \frac{2}{4.5} = 2 - 0.4444 \approx 1.5556 \][/tex]
4. Iteration 2 to find [tex]\( x_3 \)[/tex]:
For [tex]\( x = x_2 \)[/tex]:
[tex]\[ f(x_2) = \frac{2}{1.5556} - (1.5556)^2 + 1 \approx 1.2862 - 2.4203 + 1 \approx -0.1341 \][/tex]
[tex]\[ f'(x_2) = -\frac{2}{(1.5556)^2} - 2 \cdot 1.5556 \approx -\frac{2}{2.4203} - 3.1112 \approx -0.8263 - 3.1112 = -3.9375 \][/tex]
Now, calculate [tex]\( x_3 \)[/tex]:
[tex]\[ x_3 = x_2 - \frac{f(x_2)}{f'(x_2)} = 1.5556 - \frac{-0.1341}{-3.9375} \approx 1.5556 - 0.0341 \approx 1.5215 \][/tex]
So, the third approximation [tex]\( x_3 \)[/tex] to the solution of the equation [tex]\(\frac{2}{x} - x^2 + 1 = 0\)[/tex] is:
[tex]\[ x_3 \approx 1.5215 \][/tex]
This is the result rounded to four decimal places.
Thank you for visiting our platform. We hope you found the answers you were looking for. Come back anytime you need more information. We hope this was helpful. Please come back whenever you need more information or answers to your queries. Thank you for trusting Westonci.ca. Don't forget to revisit us for more accurate and insightful answers.