Discover the answers to your questions at Westonci.ca, where experts share their knowledge and insights with you. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
To find [tex]\( x_3 \)[/tex], the third approximation to the solution of the equation [tex]\(\frac{2}{x} - x^2 + 1 = 0\)[/tex] using Newton's method, we follow these steps:
1. Define the function and its derivative:
[tex]\[ f(x) = \frac{2}{x} - x^2 + 1 \][/tex]
The derivative of [tex]\( f(x) \)[/tex] is:
[tex]\[ f'(x) = -\frac{2}{x^2} - 2x \][/tex]
2. Initial approximation:
[tex]\[ x_1 = 2 \][/tex]
3. Iteration 1 to find [tex]\( x_2 \)[/tex]:
Newton's method formula is given by:
[tex]\[ x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)} \][/tex]
For [tex]\( x = x_1 \)[/tex]:
[tex]\[ f(x_1) = \frac{2}{2} - 2^2 + 1 = 1 - 4 + 1 = -2 \][/tex]
[tex]\[ f'(x_1) = -\frac{2}{2^2} - 2 \cdot 2 = -\frac{2}{4} - 4 = -0.5 - 4 = -4.5 \][/tex]
Now, calculate [tex]\( x_2 \)[/tex]:
[tex]\[ x_2 = x_1 - \frac{f(x_1)}{f'(x_1)} = 2 - \frac{-2}{-4.5} = 2 - \frac{2}{4.5} = 2 - 0.4444 \approx 1.5556 \][/tex]
4. Iteration 2 to find [tex]\( x_3 \)[/tex]:
For [tex]\( x = x_2 \)[/tex]:
[tex]\[ f(x_2) = \frac{2}{1.5556} - (1.5556)^2 + 1 \approx 1.2862 - 2.4203 + 1 \approx -0.1341 \][/tex]
[tex]\[ f'(x_2) = -\frac{2}{(1.5556)^2} - 2 \cdot 1.5556 \approx -\frac{2}{2.4203} - 3.1112 \approx -0.8263 - 3.1112 = -3.9375 \][/tex]
Now, calculate [tex]\( x_3 \)[/tex]:
[tex]\[ x_3 = x_2 - \frac{f(x_2)}{f'(x_2)} = 1.5556 - \frac{-0.1341}{-3.9375} \approx 1.5556 - 0.0341 \approx 1.5215 \][/tex]
So, the third approximation [tex]\( x_3 \)[/tex] to the solution of the equation [tex]\(\frac{2}{x} - x^2 + 1 = 0\)[/tex] is:
[tex]\[ x_3 \approx 1.5215 \][/tex]
This is the result rounded to four decimal places.
1. Define the function and its derivative:
[tex]\[ f(x) = \frac{2}{x} - x^2 + 1 \][/tex]
The derivative of [tex]\( f(x) \)[/tex] is:
[tex]\[ f'(x) = -\frac{2}{x^2} - 2x \][/tex]
2. Initial approximation:
[tex]\[ x_1 = 2 \][/tex]
3. Iteration 1 to find [tex]\( x_2 \)[/tex]:
Newton's method formula is given by:
[tex]\[ x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)} \][/tex]
For [tex]\( x = x_1 \)[/tex]:
[tex]\[ f(x_1) = \frac{2}{2} - 2^2 + 1 = 1 - 4 + 1 = -2 \][/tex]
[tex]\[ f'(x_1) = -\frac{2}{2^2} - 2 \cdot 2 = -\frac{2}{4} - 4 = -0.5 - 4 = -4.5 \][/tex]
Now, calculate [tex]\( x_2 \)[/tex]:
[tex]\[ x_2 = x_1 - \frac{f(x_1)}{f'(x_1)} = 2 - \frac{-2}{-4.5} = 2 - \frac{2}{4.5} = 2 - 0.4444 \approx 1.5556 \][/tex]
4. Iteration 2 to find [tex]\( x_3 \)[/tex]:
For [tex]\( x = x_2 \)[/tex]:
[tex]\[ f(x_2) = \frac{2}{1.5556} - (1.5556)^2 + 1 \approx 1.2862 - 2.4203 + 1 \approx -0.1341 \][/tex]
[tex]\[ f'(x_2) = -\frac{2}{(1.5556)^2} - 2 \cdot 1.5556 \approx -\frac{2}{2.4203} - 3.1112 \approx -0.8263 - 3.1112 = -3.9375 \][/tex]
Now, calculate [tex]\( x_3 \)[/tex]:
[tex]\[ x_3 = x_2 - \frac{f(x_2)}{f'(x_2)} = 1.5556 - \frac{-0.1341}{-3.9375} \approx 1.5556 - 0.0341 \approx 1.5215 \][/tex]
So, the third approximation [tex]\( x_3 \)[/tex] to the solution of the equation [tex]\(\frac{2}{x} - x^2 + 1 = 0\)[/tex] is:
[tex]\[ x_3 \approx 1.5215 \][/tex]
This is the result rounded to four decimal places.
We hope this was helpful. Please come back whenever you need more information or answers to your queries. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Westonci.ca is here to provide the answers you seek. Return often for more expert solutions.