Discover answers to your most pressing questions at Westonci.ca, the ultimate Q&A platform that connects you with expert solutions. Join our platform to connect with experts ready to provide accurate answers to your questions in various fields. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
In a geometric sequence, the term [tex]\( a_{n+1} \)[/tex] can indeed be smaller than the term [tex]\( a_n \)[/tex].
Here's a detailed explanation:
A geometric sequence is defined by the relationship between consecutive terms, where each term is obtained by multiplying the previous term by a constant called the common ratio, denoted as [tex]\( r \)[/tex].
Mathematically, this is expressed as:
[tex]\[ a_{n+1} = a_n \cdot r \][/tex]
For [tex]\( a_{n+1} \)[/tex] to be smaller than [tex]\( a_n \)[/tex], the common ratio [tex]\( r \)[/tex] must be less than 1. Specifically:
- If [tex]\( 0 < r < 1 \)[/tex], each subsequent term will be a fraction of the preceding term, making [tex]\( a_{n+1} \)[/tex] smaller than [tex]\( a_n \)[/tex].
- For instance, consider a sequence where the first term [tex]\( a_1 = 16 \)[/tex] and the common ratio [tex]\( r = 0.5 \)[/tex]. The sequence will be:
[tex]\[ 16, 8, 4, 2, 1, 0.5, \ldots \][/tex]
Here, each term is half the previous term, clearly demonstrating that [tex]\( a_{n+1} < a_n \)[/tex].
Therefore, based on this understanding, the statement is:
A. True
Here's a detailed explanation:
A geometric sequence is defined by the relationship between consecutive terms, where each term is obtained by multiplying the previous term by a constant called the common ratio, denoted as [tex]\( r \)[/tex].
Mathematically, this is expressed as:
[tex]\[ a_{n+1} = a_n \cdot r \][/tex]
For [tex]\( a_{n+1} \)[/tex] to be smaller than [tex]\( a_n \)[/tex], the common ratio [tex]\( r \)[/tex] must be less than 1. Specifically:
- If [tex]\( 0 < r < 1 \)[/tex], each subsequent term will be a fraction of the preceding term, making [tex]\( a_{n+1} \)[/tex] smaller than [tex]\( a_n \)[/tex].
- For instance, consider a sequence where the first term [tex]\( a_1 = 16 \)[/tex] and the common ratio [tex]\( r = 0.5 \)[/tex]. The sequence will be:
[tex]\[ 16, 8, 4, 2, 1, 0.5, \ldots \][/tex]
Here, each term is half the previous term, clearly demonstrating that [tex]\( a_{n+1} < a_n \)[/tex].
Therefore, based on this understanding, the statement is:
A. True
Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Thank you for choosing Westonci.ca as your information source. We look forward to your next visit.