Westonci.ca makes finding answers easy, with a community of experts ready to provide you with the information you seek. Join our platform to get reliable answers to your questions from a knowledgeable community of experts. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
To find the absolute maximum value of the function [tex]\( f(x) = 6x \cos(x) \)[/tex] on the interval [tex]\( [0, \pi] \)[/tex] correct to six decimal places, we can follow these steps:
### Step 1: Identify Critical Points
To identify the critical points in the interval, we need to find where the first derivative of the function [tex]\( f(x) \)[/tex] equals zero.
#### First Derivative
The first derivative of [tex]\( f(x) \)[/tex] is:
[tex]\[ f'(x) = \frac{d}{dx}(6x \cos(x)) = 6 \cos(x) - 6x \sin(x) \][/tex]
Set the first derivative to zero to find the critical points:
[tex]\[ 6 \cos(x) - 6x \sin(x) = 0 \][/tex]
[tex]\[ \cos(x) = x \sin(x) \][/tex]
To solve this equation, we often use numerical methods such as Newton's method.
### Step 2: Use Newton's Method
Newton's method iteratively finds roots of functions. Given an initial guess [tex]\( x_0 \)[/tex], the method uses the update formula:
[tex]\[ x_{n+1} = x_n - \frac{f'(x_n)}{f''(x_n)} \][/tex]
#### Second Derivative
We need the second derivative of [tex]\( f(x) \)[/tex] for Newton's method:
[tex]\[ f''(x) = \frac{d}{dx}(6 \cos(x) - 6x \sin(x)) = -6 \sin(x) - 6 \sin(x) - 6x \cos(x) = -12 \sin(x) - 6x \cos(x) \][/tex]
Choose an initial guess; let's start with [tex]\( x_0 = \frac{\pi}{2} \)[/tex].
Applying the Newton's method:
[tex]\[ x_{n+1} = x_n - \frac{6 \cos(x_n) - 6x_n \sin(x_n)}{-12 \sin(x_n) - 6x_n \cos(x_n)} \][/tex]
After iterating, one critical point found in the interval [tex]\( [0, \pi] \)[/tex] is approximately:
[tex]\[ x \approx 0.860334 \][/tex]
### Step 3: Determine the Nature of the Critical Point
To determine if this critical point is a maximum, evaluate the second derivative at this point:
[tex]\[ f''(0.860334) = -12 \sin(0.860334) - 6 \cdot 0.860334 \cos(0.860334) \][/tex]
If [tex]\( f''(0.860334) < 0 \)[/tex], the point is a local maximum.
### Step 4: Evaluate the Function at Key Points
We need to evaluate [tex]\( f(x) \)[/tex] at the critical points and at the endpoints of the interval:
#### Critical Point
[tex]\[ f(0.860334) \approx 3.366578 \][/tex]
#### Endpoints
[tex]\[ f(0) = 6 \cdot 0 \cdot \cos(0) = 0 \][/tex]
[tex]\[ f(\pi) = 6 \cdot \pi \cdot \cos(\pi) = 6 \cdot \pi \cdot (-1) = -6\pi \approx -18.849556 \][/tex]
### Step 5: Determine the Absolute Maximum
Compare the function values at the critical point and the endpoints:
[tex]\[ f(0.860334) \approx 3.366578, \quad f(0) = 0, \quad f(\pi) \approx -18.849556 \][/tex]
The absolute maximum value of the function [tex]\( f(x) \)[/tex] on the interval [tex]\( [0, \pi] \)[/tex] is therefore:
[tex]\[ \boxed{3.366578} \][/tex]
### Step 1: Identify Critical Points
To identify the critical points in the interval, we need to find where the first derivative of the function [tex]\( f(x) \)[/tex] equals zero.
#### First Derivative
The first derivative of [tex]\( f(x) \)[/tex] is:
[tex]\[ f'(x) = \frac{d}{dx}(6x \cos(x)) = 6 \cos(x) - 6x \sin(x) \][/tex]
Set the first derivative to zero to find the critical points:
[tex]\[ 6 \cos(x) - 6x \sin(x) = 0 \][/tex]
[tex]\[ \cos(x) = x \sin(x) \][/tex]
To solve this equation, we often use numerical methods such as Newton's method.
### Step 2: Use Newton's Method
Newton's method iteratively finds roots of functions. Given an initial guess [tex]\( x_0 \)[/tex], the method uses the update formula:
[tex]\[ x_{n+1} = x_n - \frac{f'(x_n)}{f''(x_n)} \][/tex]
#### Second Derivative
We need the second derivative of [tex]\( f(x) \)[/tex] for Newton's method:
[tex]\[ f''(x) = \frac{d}{dx}(6 \cos(x) - 6x \sin(x)) = -6 \sin(x) - 6 \sin(x) - 6x \cos(x) = -12 \sin(x) - 6x \cos(x) \][/tex]
Choose an initial guess; let's start with [tex]\( x_0 = \frac{\pi}{2} \)[/tex].
Applying the Newton's method:
[tex]\[ x_{n+1} = x_n - \frac{6 \cos(x_n) - 6x_n \sin(x_n)}{-12 \sin(x_n) - 6x_n \cos(x_n)} \][/tex]
After iterating, one critical point found in the interval [tex]\( [0, \pi] \)[/tex] is approximately:
[tex]\[ x \approx 0.860334 \][/tex]
### Step 3: Determine the Nature of the Critical Point
To determine if this critical point is a maximum, evaluate the second derivative at this point:
[tex]\[ f''(0.860334) = -12 \sin(0.860334) - 6 \cdot 0.860334 \cos(0.860334) \][/tex]
If [tex]\( f''(0.860334) < 0 \)[/tex], the point is a local maximum.
### Step 4: Evaluate the Function at Key Points
We need to evaluate [tex]\( f(x) \)[/tex] at the critical points and at the endpoints of the interval:
#### Critical Point
[tex]\[ f(0.860334) \approx 3.366578 \][/tex]
#### Endpoints
[tex]\[ f(0) = 6 \cdot 0 \cdot \cos(0) = 0 \][/tex]
[tex]\[ f(\pi) = 6 \cdot \pi \cdot \cos(\pi) = 6 \cdot \pi \cdot (-1) = -6\pi \approx -18.849556 \][/tex]
### Step 5: Determine the Absolute Maximum
Compare the function values at the critical point and the endpoints:
[tex]\[ f(0.860334) \approx 3.366578, \quad f(0) = 0, \quad f(\pi) \approx -18.849556 \][/tex]
The absolute maximum value of the function [tex]\( f(x) \)[/tex] on the interval [tex]\( [0, \pi] \)[/tex] is therefore:
[tex]\[ \boxed{3.366578} \][/tex]
Thank you for your visit. We are dedicated to helping you find the information you need, whenever you need it. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Westonci.ca is here to provide the answers you seek. Return often for more expert solutions.