Westonci.ca offers fast, accurate answers to your questions. Join our community and get the insights you need now. Experience the ease of finding quick and accurate answers to your questions from professionals on our platform. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
To determine which of the following does not describe a rigid motion transformation, we need to understand what a rigid motion transformation entails. A rigid motion transformation preserves the distance and angles, meaning the shape and size of the figure do not change.
Let's analyze each option:
A. Dilating a figure by a scale factor of [tex]\(\frac{1}{4}\)[/tex]:
- Dilation involves resizing the figure. When you apply a scale factor of [tex]\(\frac{1}{4}\)[/tex], every distance within the figure is reduced to one-fourth of its original length. This changes the size of the figure, meaning dilation is not a rigid motion transformation because it does not preserve the size of the figure.
B. Reflecting a figure across the [tex]\(x\)[/tex]-axis:
- Reflection is a type of rigid motion. Reflecting a figure across the [tex]\(x\)[/tex]-axis flips the figure over the axis, but it preserves the size and shape of the figure. All distances and angles within the figure remain the same. Thus, reflection is a rigid motion transformation.
C. Translating a figure 5 units right:
- Translation moves every point of a figure the same distance in a given direction. Translating a figure 5 units to the right does not alter the size or shape of the figure. All distances and angles are preserved. Hence, translation is a rigid motion transformation.
D. Rotating a figure 90 degrees:
- Rotation turns the figure around a fixed point, typically the origin, by a specified angle. Rotating a figure 90 degrees changes its orientation but keeps its shape and size unchanged. All distances and angles within the figure remain the same. Therefore, rotation is a rigid motion transformation.
In conclusion, the only option that does not describe a rigid motion transformation is:
A. dilating a figure by a scale factor of [tex]\(\frac{1}{4}\)[/tex].
Let's analyze each option:
A. Dilating a figure by a scale factor of [tex]\(\frac{1}{4}\)[/tex]:
- Dilation involves resizing the figure. When you apply a scale factor of [tex]\(\frac{1}{4}\)[/tex], every distance within the figure is reduced to one-fourth of its original length. This changes the size of the figure, meaning dilation is not a rigid motion transformation because it does not preserve the size of the figure.
B. Reflecting a figure across the [tex]\(x\)[/tex]-axis:
- Reflection is a type of rigid motion. Reflecting a figure across the [tex]\(x\)[/tex]-axis flips the figure over the axis, but it preserves the size and shape of the figure. All distances and angles within the figure remain the same. Thus, reflection is a rigid motion transformation.
C. Translating a figure 5 units right:
- Translation moves every point of a figure the same distance in a given direction. Translating a figure 5 units to the right does not alter the size or shape of the figure. All distances and angles are preserved. Hence, translation is a rigid motion transformation.
D. Rotating a figure 90 degrees:
- Rotation turns the figure around a fixed point, typically the origin, by a specified angle. Rotating a figure 90 degrees changes its orientation but keeps its shape and size unchanged. All distances and angles within the figure remain the same. Therefore, rotation is a rigid motion transformation.
In conclusion, the only option that does not describe a rigid motion transformation is:
A. dilating a figure by a scale factor of [tex]\(\frac{1}{4}\)[/tex].
Visit us again for up-to-date and reliable answers. We're always ready to assist you with your informational needs. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Westonci.ca is your go-to source for reliable answers. Return soon for more expert insights.