Welcome to Westonci.ca, where your questions are met with accurate answers from a community of experts and enthusiasts. Get immediate answers to your questions from a wide network of experienced professionals on our Q&A platform. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.
Sagot :
Sure! Let's solve the system of inequalities step-by-step.
We are given the system of inequalities:
[tex]\[ y + 2x > 3 \][/tex]
[tex]\[ y \geq 3.5x - 5 \][/tex]
First, let's convert each inequality into its slope-intercept form, [tex]\( y = mx + b \)[/tex].
1. For the first inequality [tex]\( y + 2x > 3 \)[/tex]:
- We need to isolate [tex]\( y \)[/tex] on one side:
[tex]\[ y > -2x + 3 \][/tex]
- The first inequality, [tex]\( y + 2x > 3 \)[/tex], is equivalent to [tex]\( y > -2x + 3 \)[/tex].
- The inequality [tex]\( y > -2x + 3 \)[/tex] has a boundary line of [tex]\( y = -2x + 3 \)[/tex] in slope-intercept form.
2. For the second inequality [tex]\( y \geq 3.5x - 5 \)[/tex]:
- This inequality is already in slope-intercept form:
[tex]\[ y \geq 3.5x - 5 \][/tex]
- The inequality [tex]\( y \geq 3.5x - 5 \)[/tex] has a boundary line of [tex]\( y = 3.5x - 5 \)[/tex].
Now that we have rewritten the inequalities in slope-intercept form, let's analyze the regions defined by these inequalities:
- The first inequality [tex]\( y > -2x + 3 \)[/tex] defines a region above the line [tex]\( y = -2x + 3 \)[/tex].
- The second inequality [tex]\( y \geq 3.5x - 5 \)[/tex] defines a region above or on the line [tex]\( y = 3.5x - 5 \)[/tex].
The solution set to the system of inequalities is the intersection of the regions defined by [tex]\( y > -2x + 3 \)[/tex] and [tex]\( y \geq 3.5x - 5 \)[/tex]. This means we look for the area where both conditions are met simultaneously.
To verify if a point is in the solution set of the system of inequalities, it must satisfy both:
1. [tex]\( y > -2x + 3 \)[/tex]
2. [tex]\( y \geq 3.5x - 5 \)[/tex]
Hence, the given system of inequalities has a solution set that is shaded above both boundary lines. The inequalities in slope-intercept form are:
[tex]\[ y > -2x + 3 \][/tex]
[tex]\[ y \geq 3.5x - 5 \][/tex]
And the point that fulfills both inequalities will be in the solution set of the system.
We are given the system of inequalities:
[tex]\[ y + 2x > 3 \][/tex]
[tex]\[ y \geq 3.5x - 5 \][/tex]
First, let's convert each inequality into its slope-intercept form, [tex]\( y = mx + b \)[/tex].
1. For the first inequality [tex]\( y + 2x > 3 \)[/tex]:
- We need to isolate [tex]\( y \)[/tex] on one side:
[tex]\[ y > -2x + 3 \][/tex]
- The first inequality, [tex]\( y + 2x > 3 \)[/tex], is equivalent to [tex]\( y > -2x + 3 \)[/tex].
- The inequality [tex]\( y > -2x + 3 \)[/tex] has a boundary line of [tex]\( y = -2x + 3 \)[/tex] in slope-intercept form.
2. For the second inequality [tex]\( y \geq 3.5x - 5 \)[/tex]:
- This inequality is already in slope-intercept form:
[tex]\[ y \geq 3.5x - 5 \][/tex]
- The inequality [tex]\( y \geq 3.5x - 5 \)[/tex] has a boundary line of [tex]\( y = 3.5x - 5 \)[/tex].
Now that we have rewritten the inequalities in slope-intercept form, let's analyze the regions defined by these inequalities:
- The first inequality [tex]\( y > -2x + 3 \)[/tex] defines a region above the line [tex]\( y = -2x + 3 \)[/tex].
- The second inequality [tex]\( y \geq 3.5x - 5 \)[/tex] defines a region above or on the line [tex]\( y = 3.5x - 5 \)[/tex].
The solution set to the system of inequalities is the intersection of the regions defined by [tex]\( y > -2x + 3 \)[/tex] and [tex]\( y \geq 3.5x - 5 \)[/tex]. This means we look for the area where both conditions are met simultaneously.
To verify if a point is in the solution set of the system of inequalities, it must satisfy both:
1. [tex]\( y > -2x + 3 \)[/tex]
2. [tex]\( y \geq 3.5x - 5 \)[/tex]
Hence, the given system of inequalities has a solution set that is shaded above both boundary lines. The inequalities in slope-intercept form are:
[tex]\[ y > -2x + 3 \][/tex]
[tex]\[ y \geq 3.5x - 5 \][/tex]
And the point that fulfills both inequalities will be in the solution set of the system.
Thank you for trusting us with your questions. We're here to help you find accurate answers quickly and efficiently. Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Stay curious and keep coming back to Westonci.ca for answers to all your burning questions.