Westonci.ca is your go-to source for answers, with a community ready to provide accurate and timely information. Explore thousands of questions and answers from a knowledgeable community of experts on our user-friendly platform. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
Sure! Let's solve the system of inequalities step-by-step.
We are given the system of inequalities:
[tex]\[ y + 2x > 3 \][/tex]
[tex]\[ y \geq 3.5x - 5 \][/tex]
First, let's convert each inequality into its slope-intercept form, [tex]\( y = mx + b \)[/tex].
1. For the first inequality [tex]\( y + 2x > 3 \)[/tex]:
- We need to isolate [tex]\( y \)[/tex] on one side:
[tex]\[ y > -2x + 3 \][/tex]
- The first inequality, [tex]\( y + 2x > 3 \)[/tex], is equivalent to [tex]\( y > -2x + 3 \)[/tex].
- The inequality [tex]\( y > -2x + 3 \)[/tex] has a boundary line of [tex]\( y = -2x + 3 \)[/tex] in slope-intercept form.
2. For the second inequality [tex]\( y \geq 3.5x - 5 \)[/tex]:
- This inequality is already in slope-intercept form:
[tex]\[ y \geq 3.5x - 5 \][/tex]
- The inequality [tex]\( y \geq 3.5x - 5 \)[/tex] has a boundary line of [tex]\( y = 3.5x - 5 \)[/tex].
Now that we have rewritten the inequalities in slope-intercept form, let's analyze the regions defined by these inequalities:
- The first inequality [tex]\( y > -2x + 3 \)[/tex] defines a region above the line [tex]\( y = -2x + 3 \)[/tex].
- The second inequality [tex]\( y \geq 3.5x - 5 \)[/tex] defines a region above or on the line [tex]\( y = 3.5x - 5 \)[/tex].
The solution set to the system of inequalities is the intersection of the regions defined by [tex]\( y > -2x + 3 \)[/tex] and [tex]\( y \geq 3.5x - 5 \)[/tex]. This means we look for the area where both conditions are met simultaneously.
To verify if a point is in the solution set of the system of inequalities, it must satisfy both:
1. [tex]\( y > -2x + 3 \)[/tex]
2. [tex]\( y \geq 3.5x - 5 \)[/tex]
Hence, the given system of inequalities has a solution set that is shaded above both boundary lines. The inequalities in slope-intercept form are:
[tex]\[ y > -2x + 3 \][/tex]
[tex]\[ y \geq 3.5x - 5 \][/tex]
And the point that fulfills both inequalities will be in the solution set of the system.
We are given the system of inequalities:
[tex]\[ y + 2x > 3 \][/tex]
[tex]\[ y \geq 3.5x - 5 \][/tex]
First, let's convert each inequality into its slope-intercept form, [tex]\( y = mx + b \)[/tex].
1. For the first inequality [tex]\( y + 2x > 3 \)[/tex]:
- We need to isolate [tex]\( y \)[/tex] on one side:
[tex]\[ y > -2x + 3 \][/tex]
- The first inequality, [tex]\( y + 2x > 3 \)[/tex], is equivalent to [tex]\( y > -2x + 3 \)[/tex].
- The inequality [tex]\( y > -2x + 3 \)[/tex] has a boundary line of [tex]\( y = -2x + 3 \)[/tex] in slope-intercept form.
2. For the second inequality [tex]\( y \geq 3.5x - 5 \)[/tex]:
- This inequality is already in slope-intercept form:
[tex]\[ y \geq 3.5x - 5 \][/tex]
- The inequality [tex]\( y \geq 3.5x - 5 \)[/tex] has a boundary line of [tex]\( y = 3.5x - 5 \)[/tex].
Now that we have rewritten the inequalities in slope-intercept form, let's analyze the regions defined by these inequalities:
- The first inequality [tex]\( y > -2x + 3 \)[/tex] defines a region above the line [tex]\( y = -2x + 3 \)[/tex].
- The second inequality [tex]\( y \geq 3.5x - 5 \)[/tex] defines a region above or on the line [tex]\( y = 3.5x - 5 \)[/tex].
The solution set to the system of inequalities is the intersection of the regions defined by [tex]\( y > -2x + 3 \)[/tex] and [tex]\( y \geq 3.5x - 5 \)[/tex]. This means we look for the area where both conditions are met simultaneously.
To verify if a point is in the solution set of the system of inequalities, it must satisfy both:
1. [tex]\( y > -2x + 3 \)[/tex]
2. [tex]\( y \geq 3.5x - 5 \)[/tex]
Hence, the given system of inequalities has a solution set that is shaded above both boundary lines. The inequalities in slope-intercept form are:
[tex]\[ y > -2x + 3 \][/tex]
[tex]\[ y \geq 3.5x - 5 \][/tex]
And the point that fulfills both inequalities will be in the solution set of the system.
We appreciate your time. Please revisit us for more reliable answers to any questions you may have. We hope this was helpful. Please come back whenever you need more information or answers to your queries. Westonci.ca is your go-to source for reliable answers. Return soon for more expert insights.