Discover the answers you need at Westonci.ca, a dynamic Q&A platform where knowledge is shared freely by a community of experts. Get immediate and reliable solutions to your questions from a community of experienced experts on our Q&A platform. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
Let's go through the steps in detail to address what Faelyn should do next.
1. Original Grouping:
Given polynomial: [tex]\(6x^4 - 8x^2 + 3x^2 + 4\)[/tex]
Grouping the terms:
[tex]\[ (6x^4 - 8x^2) + (3x^2 + 4) \][/tex]
2. Factoring Out the GCF in Each Group:
Factor out the greatest common factor (GCF) from each grouped term:
[tex]\[ 2x^2(3x^2 - 4) + 1(3x^2 + 4) \][/tex]
At this stage, Faelyn sees that there is no common binomial factor between the two grouped expressions, i.e., [tex]\(3x^2 - 4\)[/tex] and [tex]\(3x^2 + 4\)[/tex].
3. Regrouping the Terms:
To make the binomial factors the same, Faelyn should factor out a negative sign from one of the groups. This will align the binomials properly:
[tex]\[ (6x^4 - 8x^2) - (-(3x^2 + 4)) \][/tex]
4. Factoring Out the GCF Again:
By factoring a negative from the second group, we can now express it as:
[tex]\[ 6x^4 - 8x^2 - (3x^2 + 4) \][/tex]
Simplifying the second group:
[tex]\[ (6x^4 - 8x^2) - (-3x^2 - 4) \][/tex]
Now factor out the common binomial factor from the expression:
[tex]\[ 2x^2(3x^2 - 4) - 1(3x^2 - 4) \][/tex]
5. Combining the Factored Terms:
With the same binomial factor [tex]\(3x^2 - 4\)[/tex] in place, we can combine the factored terms:
[tex]\[ (3x^2 - 4)(2x^2 - 1) \][/tex]
Thus, the polynomial [tex]\(6x^4 - 8x^2 + 3x^2 + 4\)[/tex] can be factored as [tex]\((3x^2 - 4)(2x^2 - 1)\)[/tex].
Hence, the accurate description of what Faelyn should do next is:
Faelyn should factor out a negative from one of the groups so the binomials will be the same.
1. Original Grouping:
Given polynomial: [tex]\(6x^4 - 8x^2 + 3x^2 + 4\)[/tex]
Grouping the terms:
[tex]\[ (6x^4 - 8x^2) + (3x^2 + 4) \][/tex]
2. Factoring Out the GCF in Each Group:
Factor out the greatest common factor (GCF) from each grouped term:
[tex]\[ 2x^2(3x^2 - 4) + 1(3x^2 + 4) \][/tex]
At this stage, Faelyn sees that there is no common binomial factor between the two grouped expressions, i.e., [tex]\(3x^2 - 4\)[/tex] and [tex]\(3x^2 + 4\)[/tex].
3. Regrouping the Terms:
To make the binomial factors the same, Faelyn should factor out a negative sign from one of the groups. This will align the binomials properly:
[tex]\[ (6x^4 - 8x^2) - (-(3x^2 + 4)) \][/tex]
4. Factoring Out the GCF Again:
By factoring a negative from the second group, we can now express it as:
[tex]\[ 6x^4 - 8x^2 - (3x^2 + 4) \][/tex]
Simplifying the second group:
[tex]\[ (6x^4 - 8x^2) - (-3x^2 - 4) \][/tex]
Now factor out the common binomial factor from the expression:
[tex]\[ 2x^2(3x^2 - 4) - 1(3x^2 - 4) \][/tex]
5. Combining the Factored Terms:
With the same binomial factor [tex]\(3x^2 - 4\)[/tex] in place, we can combine the factored terms:
[tex]\[ (3x^2 - 4)(2x^2 - 1) \][/tex]
Thus, the polynomial [tex]\(6x^4 - 8x^2 + 3x^2 + 4\)[/tex] can be factored as [tex]\((3x^2 - 4)(2x^2 - 1)\)[/tex].
Hence, the accurate description of what Faelyn should do next is:
Faelyn should factor out a negative from one of the groups so the binomials will be the same.
Thanks for using our platform. We're always here to provide accurate and up-to-date answers to all your queries. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Thank you for choosing Westonci.ca as your information source. We look forward to your next visit.