Welcome to Westonci.ca, the place where your questions find answers from a community of knowledgeable experts. Discover precise answers to your questions from a wide range of experts on our user-friendly Q&A platform. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.
Sagot :
To determine which chemical reaction follows an overall second-order rate law, we need to examine each given rate law and calculate the overall reaction order.
1. Rate Law: [tex]\( R = k[A]^2[B]^2 \)[/tex]
- The reaction order with respect to [tex]\( A \)[/tex] is 2.
- The reaction order with respect to [tex]\( B \)[/tex] is 2.
- The overall order of the reaction: [tex]\( 2 + 2 = 4 \)[/tex].
- This is a fourth-order reaction.
2. Rate Law: [tex]\( R = k[A][B] \)[/tex]
- The reaction order with respect to [tex]\( A \)[/tex] is 1.
- The reaction order with respect to [tex]\( B \)[/tex] is 1.
- The overall order of the reaction: [tex]\( 1 + 1 = 2 \)[/tex].
- This is a second-order reaction.
3. Rate Law: [tex]\( R = k \)[/tex]
- There are no concentration terms for [tex]\( A \)[/tex] or [tex]\( B \)[/tex]; hence, their exponents are 0.
- The overall order of the reaction: [tex]\( 0 + 0 = 0 \)[/tex].
- This is a zero-order reaction.
4. Rate Law: [tex]\( R = k[B] \)[/tex]
- The reaction order with respect to [tex]\( B \)[/tex] is 1.
- There is no [tex]\( A \)[/tex] term, indicating an exponent of 0 for [tex]\( A \)[/tex].
- The overall order of the reaction: [tex]\( 0 + 1 = 1 \)[/tex].
- This is a first-order reaction.
Among the given options, the rate law that represents an overall second-order reaction is:
[tex]\[ R = k[A][B] \][/tex]
Therefore, the correct answer is:
[tex]\[ R = k[A][B] \][/tex]
1. Rate Law: [tex]\( R = k[A]^2[B]^2 \)[/tex]
- The reaction order with respect to [tex]\( A \)[/tex] is 2.
- The reaction order with respect to [tex]\( B \)[/tex] is 2.
- The overall order of the reaction: [tex]\( 2 + 2 = 4 \)[/tex].
- This is a fourth-order reaction.
2. Rate Law: [tex]\( R = k[A][B] \)[/tex]
- The reaction order with respect to [tex]\( A \)[/tex] is 1.
- The reaction order with respect to [tex]\( B \)[/tex] is 1.
- The overall order of the reaction: [tex]\( 1 + 1 = 2 \)[/tex].
- This is a second-order reaction.
3. Rate Law: [tex]\( R = k \)[/tex]
- There are no concentration terms for [tex]\( A \)[/tex] or [tex]\( B \)[/tex]; hence, their exponents are 0.
- The overall order of the reaction: [tex]\( 0 + 0 = 0 \)[/tex].
- This is a zero-order reaction.
4. Rate Law: [tex]\( R = k[B] \)[/tex]
- The reaction order with respect to [tex]\( B \)[/tex] is 1.
- There is no [tex]\( A \)[/tex] term, indicating an exponent of 0 for [tex]\( A \)[/tex].
- The overall order of the reaction: [tex]\( 0 + 1 = 1 \)[/tex].
- This is a first-order reaction.
Among the given options, the rate law that represents an overall second-order reaction is:
[tex]\[ R = k[A][B] \][/tex]
Therefore, the correct answer is:
[tex]\[ R = k[A][B] \][/tex]
We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Keep exploring Westonci.ca for more insightful answers to your questions. We're here to help.