Get the answers you need at Westonci.ca, where our expert community is dedicated to providing you with accurate information. Join our Q&A platform to connect with experts dedicated to providing precise answers to your questions in different areas. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.

Determine the intercepts of the line. Do not round your answers.

[tex]\[ 4x - 1 = 3y + 5 \][/tex]

[tex]\( x \)[/tex]-intercept: [tex]\(\square\)[/tex]

[tex]\( y \)[/tex]-intercept: [tex]\(\square\)[/tex]


Sagot :

To determine the intercepts of the line given by the equation [tex]\(4x - 1 = 3y + 5\)[/tex], we need to find both the [tex]\(x\)[/tex]-intercept and the [tex]\(y\)[/tex]-intercept. Let's go through the steps to find each intercept.

### Finding the [tex]\(x\)[/tex]-Intercept
The [tex]\(x\)[/tex]-intercept is the point where the line crosses the [tex]\(x\)[/tex]-axis. This occurs when [tex]\(y = 0\)[/tex]. To find the [tex]\(x\)[/tex]-intercept, we substitute [tex]\(y = 0\)[/tex] into the equation and solve for [tex]\(x\)[/tex]:

1. Start with the original equation:
[tex]\[ 4x - 1 = 3y + 5 \][/tex]

2. Substitute [tex]\(y = 0\)[/tex]:
[tex]\[ 4x - 1 = 3(0) + 5 \][/tex]

3. Simplify the equation:
[tex]\[ 4x - 1 = 5 \][/tex]

4. Add 1 to both sides:
[tex]\[ 4x = 6 \][/tex]

5. Divide by 4:
[tex]\[ x = \frac{6}{4} = 1.5 \][/tex]

Thus, the [tex]\(x\)[/tex]-intercept is [tex]\( x = 1.5 \)[/tex].

### Finding the [tex]\(y\)[/tex]-Intercept
The [tex]\(y\)[/tex]-intercept is the point where the line crosses the [tex]\(y\)[/tex]-axis. This occurs when [tex]\(x = 0\)[/tex]. To find the [tex]\(y\)[/tex]-intercept, we substitute [tex]\(x = 0\)[/tex] into the equation and solve for [tex]\(y\)[/tex]:

1. Start with the original equation:
[tex]\[ 4x - 1 = 3y + 5 \][/tex]

2. Substitute [tex]\(x = 0\)[/tex]:
[tex]\[ 4(0) - 1 = 3y + 5 \][/tex]

3. Simplify the equation:
[tex]\[ -1 = 3y + 5 \][/tex]

4. Subtract 5 from both sides:
[tex]\[ -6 = 3y \][/tex]

5. Divide by 3:
[tex]\[ y = \frac{-6}{3} = -2 \][/tex]

Thus, the [tex]\(y\)[/tex]-intercept is [tex]\( y = -2 \)[/tex].

### Summary
- [tex]\(x\)[/tex]-intercept: [tex]\( 1.5 \)[/tex]
- [tex]\(y\)[/tex]-intercept: [tex]\( -2 \)[/tex]