At Westonci.ca, we provide clear, reliable answers to all your questions. Join our vibrant community and get the solutions you need. Join our platform to connect with experts ready to provide detailed answers to your questions in various areas. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.
Sagot :
Certainly! Let's verify the given statement: [tex]\((PQ)^{-1} = Q^{-1} P^{-1}\)[/tex] where the matrices [tex]\(P\)[/tex] and [tex]\(Q\)[/tex] are defined as follows:
[tex]\[ P = \begin{pmatrix} 4 & 5 \\ 7 & 9 \end{pmatrix} \][/tex]
[tex]\[ Q = \begin{pmatrix} 6 & 7 \\ 8 & 9 \end{pmatrix} \][/tex]
### Step 1: Calculate the product [tex]\(PQ\)[/tex]
First, we compute the matrix product [tex]\(PQ\)[/tex]:
[tex]\[ PQ = \begin{pmatrix} 4 & 5 \\ 7 & 9 \end{pmatrix} \begin{pmatrix} 6 & 7 \\ 8 & 9 \end{pmatrix} \][/tex]
We can find each element of the resulting matrix [tex]\(PQ\)[/tex] as follows:
- The element in the first row, first column is [tex]\(4 \cdot 6 + 5 \cdot 8 = 24 + 40 = 64\)[/tex]
- The element in the first row, second column is [tex]\(4 \cdot 7 + 5 \cdot 9 = 28 + 45 = 73\)[/tex]
- The element in the second row, first column is [tex]\(7 \cdot 6 + 9 \cdot 8 = 42 + 72 = 114\)[/tex]
- The element in the second row, second column is [tex]\(7 \cdot 7 + 9 \cdot 9 = 49 + 81 = 130\)[/tex]
Thus,
[tex]\[ PQ = \begin{pmatrix} 64 & 73 \\ 114 & 130 \end{pmatrix} \][/tex]
### Step 2: Calculate the inverse of [tex]\(P\)[/tex]
Next, we compute the inverse of matrix [tex]\(P\)[/tex]. We use the formula for the inverse of a [tex]\(2 \times 2\)[/tex] matrix:
[tex]\[ P^{-1} = \frac{1}{\text{det}(P)} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix} \quad \text{where} \quad P = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \][/tex]
For [tex]\(P\)[/tex]:
[tex]\[ P = \begin{pmatrix} 4 & 5 \\ 7 & 9 \end{pmatrix} \][/tex]
The determinant, [tex]\(\text{det}(P)\)[/tex], is given by:
[tex]\[ \text{det}(P) = 4 \cdot 9 - 5 \cdot 7 = 36 - 35 = 1 \][/tex]
Hence,
[tex]\[ P^{-1} = \begin{pmatrix} 9 & -5 \\ -7 & 4 \end{pmatrix} \][/tex]
### Step 3: Calculate the inverse of [tex]\(Q\)[/tex]
Similarly, we calculate the inverse of matrix [tex]\(Q\)[/tex]:
[tex]\[ Q = \begin{pmatrix} 6 & 7 \\ 8 & 9 \end{pmatrix} \][/tex]
The determinant, [tex]\(\text{det}(Q)\)[/tex], is given by:
[tex]\[ \text{det}(Q) = 6 \cdot 9 - 7 \cdot 8 = 54 - 56 = -2 \][/tex]
Thus,
[tex]\[ Q^{-1} = \frac{1}{-2} \begin{pmatrix} 9 & -7 \\ -8 & 6 \end{pmatrix} = \begin{pmatrix} -4.5 & 3.5 \\ 4 & -3 \end{pmatrix} \][/tex]
### Step 4: Calculate the product [tex]\(Q^{-1} P^{-1}\)[/tex]
We now find the product of the inverses [tex]\(Q^{-1} P^{-1}\)[/tex]:
[tex]\[ Q^{-1} P^{-1} = \begin{pmatrix} -4.5 & 3.5 \\ 4 & -3 \end{pmatrix} \begin{pmatrix} 9 & -5 \\ -7 & 4 \end{pmatrix} \][/tex]
We calculate each element of the resulting matrix:
- The element in the first row, first column is [tex]\((-4.5 \cdot 9) + (3.5 \cdot -7) = -40.5 - 24.5 = -65\)[/tex]
- The element in the first row, second column is [tex]\((-4.5 \cdot -5) + (3.5 \cdot 4) = 22.5 + 14 = 36.5\)[/tex]
- The element in the second row, first column is [tex]\((4 \cdot 9) + (-3 \cdot -7) = 36 + 21 = 57\)[/tex]
- The element in the second row, second column is [tex]\((4 \cdot -5) + (-3 \cdot 4) = -20 - 12 = -32\)[/tex]
Thus,
[tex]\[ Q^{-1} P^{-1} = \begin{pmatrix} -65 & 36.5 \\ 57 & -32 \end{pmatrix} \][/tex]
### Step 5: Calculate the inverse of [tex]\(PQ\)[/tex]
Finally, we calculate the inverse of the product [tex]\(PQ \)[/tex]:
[tex]\[ PQ = \begin{pmatrix} 64 & 73 \\ 114 & 130 \end{pmatrix} \][/tex]
The determinant, [tex]\(\text{det}(PQ)\)[/tex], is:
[tex]\[ \text{det}(PQ) = 64 \cdot 130 - 73 \cdot 114 = 8320 - 8322 = -2 \][/tex]
Thus,
[tex]\[ (PQ)^{-1} = \frac{1}{-2} \begin{pmatrix} 130 & -73 \\ -114 & 64 \end{pmatrix} = \begin{pmatrix} -65 & 36.5 \\ 57 & -32 \end{pmatrix} \][/tex]
### Conclusion
Since:
[tex]\[ (PQ)^{-1} = \begin{pmatrix} -65 & 36.5 \\ 57 & -32 \end{pmatrix} \][/tex]
and
[tex]\[ Q^{-1} P^{-1} = \begin{pmatrix} -65 & 36.5 \\ 57 & -32 \end{pmatrix} \][/tex]
We have verified that:
[tex]\[ (PQ)^{-1} = Q^{-1} P^{-1} \][/tex]
This completes the solution!
[tex]\[ P = \begin{pmatrix} 4 & 5 \\ 7 & 9 \end{pmatrix} \][/tex]
[tex]\[ Q = \begin{pmatrix} 6 & 7 \\ 8 & 9 \end{pmatrix} \][/tex]
### Step 1: Calculate the product [tex]\(PQ\)[/tex]
First, we compute the matrix product [tex]\(PQ\)[/tex]:
[tex]\[ PQ = \begin{pmatrix} 4 & 5 \\ 7 & 9 \end{pmatrix} \begin{pmatrix} 6 & 7 \\ 8 & 9 \end{pmatrix} \][/tex]
We can find each element of the resulting matrix [tex]\(PQ\)[/tex] as follows:
- The element in the first row, first column is [tex]\(4 \cdot 6 + 5 \cdot 8 = 24 + 40 = 64\)[/tex]
- The element in the first row, second column is [tex]\(4 \cdot 7 + 5 \cdot 9 = 28 + 45 = 73\)[/tex]
- The element in the second row, first column is [tex]\(7 \cdot 6 + 9 \cdot 8 = 42 + 72 = 114\)[/tex]
- The element in the second row, second column is [tex]\(7 \cdot 7 + 9 \cdot 9 = 49 + 81 = 130\)[/tex]
Thus,
[tex]\[ PQ = \begin{pmatrix} 64 & 73 \\ 114 & 130 \end{pmatrix} \][/tex]
### Step 2: Calculate the inverse of [tex]\(P\)[/tex]
Next, we compute the inverse of matrix [tex]\(P\)[/tex]. We use the formula for the inverse of a [tex]\(2 \times 2\)[/tex] matrix:
[tex]\[ P^{-1} = \frac{1}{\text{det}(P)} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix} \quad \text{where} \quad P = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \][/tex]
For [tex]\(P\)[/tex]:
[tex]\[ P = \begin{pmatrix} 4 & 5 \\ 7 & 9 \end{pmatrix} \][/tex]
The determinant, [tex]\(\text{det}(P)\)[/tex], is given by:
[tex]\[ \text{det}(P) = 4 \cdot 9 - 5 \cdot 7 = 36 - 35 = 1 \][/tex]
Hence,
[tex]\[ P^{-1} = \begin{pmatrix} 9 & -5 \\ -7 & 4 \end{pmatrix} \][/tex]
### Step 3: Calculate the inverse of [tex]\(Q\)[/tex]
Similarly, we calculate the inverse of matrix [tex]\(Q\)[/tex]:
[tex]\[ Q = \begin{pmatrix} 6 & 7 \\ 8 & 9 \end{pmatrix} \][/tex]
The determinant, [tex]\(\text{det}(Q)\)[/tex], is given by:
[tex]\[ \text{det}(Q) = 6 \cdot 9 - 7 \cdot 8 = 54 - 56 = -2 \][/tex]
Thus,
[tex]\[ Q^{-1} = \frac{1}{-2} \begin{pmatrix} 9 & -7 \\ -8 & 6 \end{pmatrix} = \begin{pmatrix} -4.5 & 3.5 \\ 4 & -3 \end{pmatrix} \][/tex]
### Step 4: Calculate the product [tex]\(Q^{-1} P^{-1}\)[/tex]
We now find the product of the inverses [tex]\(Q^{-1} P^{-1}\)[/tex]:
[tex]\[ Q^{-1} P^{-1} = \begin{pmatrix} -4.5 & 3.5 \\ 4 & -3 \end{pmatrix} \begin{pmatrix} 9 & -5 \\ -7 & 4 \end{pmatrix} \][/tex]
We calculate each element of the resulting matrix:
- The element in the first row, first column is [tex]\((-4.5 \cdot 9) + (3.5 \cdot -7) = -40.5 - 24.5 = -65\)[/tex]
- The element in the first row, second column is [tex]\((-4.5 \cdot -5) + (3.5 \cdot 4) = 22.5 + 14 = 36.5\)[/tex]
- The element in the second row, first column is [tex]\((4 \cdot 9) + (-3 \cdot -7) = 36 + 21 = 57\)[/tex]
- The element in the second row, second column is [tex]\((4 \cdot -5) + (-3 \cdot 4) = -20 - 12 = -32\)[/tex]
Thus,
[tex]\[ Q^{-1} P^{-1} = \begin{pmatrix} -65 & 36.5 \\ 57 & -32 \end{pmatrix} \][/tex]
### Step 5: Calculate the inverse of [tex]\(PQ\)[/tex]
Finally, we calculate the inverse of the product [tex]\(PQ \)[/tex]:
[tex]\[ PQ = \begin{pmatrix} 64 & 73 \\ 114 & 130 \end{pmatrix} \][/tex]
The determinant, [tex]\(\text{det}(PQ)\)[/tex], is:
[tex]\[ \text{det}(PQ) = 64 \cdot 130 - 73 \cdot 114 = 8320 - 8322 = -2 \][/tex]
Thus,
[tex]\[ (PQ)^{-1} = \frac{1}{-2} \begin{pmatrix} 130 & -73 \\ -114 & 64 \end{pmatrix} = \begin{pmatrix} -65 & 36.5 \\ 57 & -32 \end{pmatrix} \][/tex]
### Conclusion
Since:
[tex]\[ (PQ)^{-1} = \begin{pmatrix} -65 & 36.5 \\ 57 & -32 \end{pmatrix} \][/tex]
and
[tex]\[ Q^{-1} P^{-1} = \begin{pmatrix} -65 & 36.5 \\ 57 & -32 \end{pmatrix} \][/tex]
We have verified that:
[tex]\[ (PQ)^{-1} = Q^{-1} P^{-1} \][/tex]
This completes the solution!
Thanks for stopping by. We are committed to providing the best answers for all your questions. See you again soon. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. We're glad you visited Westonci.ca. Return anytime for updated answers from our knowledgeable team.