Welcome to Westonci.ca, the place where your questions find answers from a community of knowledgeable experts. Connect with a community of experts ready to provide precise solutions to your questions quickly and accurately. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.
Sagot :
Certainly! Let's verify the given statement: [tex]\((PQ)^{-1} = Q^{-1} P^{-1}\)[/tex] where the matrices [tex]\(P\)[/tex] and [tex]\(Q\)[/tex] are defined as follows:
[tex]\[ P = \begin{pmatrix} 4 & 5 \\ 7 & 9 \end{pmatrix} \][/tex]
[tex]\[ Q = \begin{pmatrix} 6 & 7 \\ 8 & 9 \end{pmatrix} \][/tex]
### Step 1: Calculate the product [tex]\(PQ\)[/tex]
First, we compute the matrix product [tex]\(PQ\)[/tex]:
[tex]\[ PQ = \begin{pmatrix} 4 & 5 \\ 7 & 9 \end{pmatrix} \begin{pmatrix} 6 & 7 \\ 8 & 9 \end{pmatrix} \][/tex]
We can find each element of the resulting matrix [tex]\(PQ\)[/tex] as follows:
- The element in the first row, first column is [tex]\(4 \cdot 6 + 5 \cdot 8 = 24 + 40 = 64\)[/tex]
- The element in the first row, second column is [tex]\(4 \cdot 7 + 5 \cdot 9 = 28 + 45 = 73\)[/tex]
- The element in the second row, first column is [tex]\(7 \cdot 6 + 9 \cdot 8 = 42 + 72 = 114\)[/tex]
- The element in the second row, second column is [tex]\(7 \cdot 7 + 9 \cdot 9 = 49 + 81 = 130\)[/tex]
Thus,
[tex]\[ PQ = \begin{pmatrix} 64 & 73 \\ 114 & 130 \end{pmatrix} \][/tex]
### Step 2: Calculate the inverse of [tex]\(P\)[/tex]
Next, we compute the inverse of matrix [tex]\(P\)[/tex]. We use the formula for the inverse of a [tex]\(2 \times 2\)[/tex] matrix:
[tex]\[ P^{-1} = \frac{1}{\text{det}(P)} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix} \quad \text{where} \quad P = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \][/tex]
For [tex]\(P\)[/tex]:
[tex]\[ P = \begin{pmatrix} 4 & 5 \\ 7 & 9 \end{pmatrix} \][/tex]
The determinant, [tex]\(\text{det}(P)\)[/tex], is given by:
[tex]\[ \text{det}(P) = 4 \cdot 9 - 5 \cdot 7 = 36 - 35 = 1 \][/tex]
Hence,
[tex]\[ P^{-1} = \begin{pmatrix} 9 & -5 \\ -7 & 4 \end{pmatrix} \][/tex]
### Step 3: Calculate the inverse of [tex]\(Q\)[/tex]
Similarly, we calculate the inverse of matrix [tex]\(Q\)[/tex]:
[tex]\[ Q = \begin{pmatrix} 6 & 7 \\ 8 & 9 \end{pmatrix} \][/tex]
The determinant, [tex]\(\text{det}(Q)\)[/tex], is given by:
[tex]\[ \text{det}(Q) = 6 \cdot 9 - 7 \cdot 8 = 54 - 56 = -2 \][/tex]
Thus,
[tex]\[ Q^{-1} = \frac{1}{-2} \begin{pmatrix} 9 & -7 \\ -8 & 6 \end{pmatrix} = \begin{pmatrix} -4.5 & 3.5 \\ 4 & -3 \end{pmatrix} \][/tex]
### Step 4: Calculate the product [tex]\(Q^{-1} P^{-1}\)[/tex]
We now find the product of the inverses [tex]\(Q^{-1} P^{-1}\)[/tex]:
[tex]\[ Q^{-1} P^{-1} = \begin{pmatrix} -4.5 & 3.5 \\ 4 & -3 \end{pmatrix} \begin{pmatrix} 9 & -5 \\ -7 & 4 \end{pmatrix} \][/tex]
We calculate each element of the resulting matrix:
- The element in the first row, first column is [tex]\((-4.5 \cdot 9) + (3.5 \cdot -7) = -40.5 - 24.5 = -65\)[/tex]
- The element in the first row, second column is [tex]\((-4.5 \cdot -5) + (3.5 \cdot 4) = 22.5 + 14 = 36.5\)[/tex]
- The element in the second row, first column is [tex]\((4 \cdot 9) + (-3 \cdot -7) = 36 + 21 = 57\)[/tex]
- The element in the second row, second column is [tex]\((4 \cdot -5) + (-3 \cdot 4) = -20 - 12 = -32\)[/tex]
Thus,
[tex]\[ Q^{-1} P^{-1} = \begin{pmatrix} -65 & 36.5 \\ 57 & -32 \end{pmatrix} \][/tex]
### Step 5: Calculate the inverse of [tex]\(PQ\)[/tex]
Finally, we calculate the inverse of the product [tex]\(PQ \)[/tex]:
[tex]\[ PQ = \begin{pmatrix} 64 & 73 \\ 114 & 130 \end{pmatrix} \][/tex]
The determinant, [tex]\(\text{det}(PQ)\)[/tex], is:
[tex]\[ \text{det}(PQ) = 64 \cdot 130 - 73 \cdot 114 = 8320 - 8322 = -2 \][/tex]
Thus,
[tex]\[ (PQ)^{-1} = \frac{1}{-2} \begin{pmatrix} 130 & -73 \\ -114 & 64 \end{pmatrix} = \begin{pmatrix} -65 & 36.5 \\ 57 & -32 \end{pmatrix} \][/tex]
### Conclusion
Since:
[tex]\[ (PQ)^{-1} = \begin{pmatrix} -65 & 36.5 \\ 57 & -32 \end{pmatrix} \][/tex]
and
[tex]\[ Q^{-1} P^{-1} = \begin{pmatrix} -65 & 36.5 \\ 57 & -32 \end{pmatrix} \][/tex]
We have verified that:
[tex]\[ (PQ)^{-1} = Q^{-1} P^{-1} \][/tex]
This completes the solution!
[tex]\[ P = \begin{pmatrix} 4 & 5 \\ 7 & 9 \end{pmatrix} \][/tex]
[tex]\[ Q = \begin{pmatrix} 6 & 7 \\ 8 & 9 \end{pmatrix} \][/tex]
### Step 1: Calculate the product [tex]\(PQ\)[/tex]
First, we compute the matrix product [tex]\(PQ\)[/tex]:
[tex]\[ PQ = \begin{pmatrix} 4 & 5 \\ 7 & 9 \end{pmatrix} \begin{pmatrix} 6 & 7 \\ 8 & 9 \end{pmatrix} \][/tex]
We can find each element of the resulting matrix [tex]\(PQ\)[/tex] as follows:
- The element in the first row, first column is [tex]\(4 \cdot 6 + 5 \cdot 8 = 24 + 40 = 64\)[/tex]
- The element in the first row, second column is [tex]\(4 \cdot 7 + 5 \cdot 9 = 28 + 45 = 73\)[/tex]
- The element in the second row, first column is [tex]\(7 \cdot 6 + 9 \cdot 8 = 42 + 72 = 114\)[/tex]
- The element in the second row, second column is [tex]\(7 \cdot 7 + 9 \cdot 9 = 49 + 81 = 130\)[/tex]
Thus,
[tex]\[ PQ = \begin{pmatrix} 64 & 73 \\ 114 & 130 \end{pmatrix} \][/tex]
### Step 2: Calculate the inverse of [tex]\(P\)[/tex]
Next, we compute the inverse of matrix [tex]\(P\)[/tex]. We use the formula for the inverse of a [tex]\(2 \times 2\)[/tex] matrix:
[tex]\[ P^{-1} = \frac{1}{\text{det}(P)} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix} \quad \text{where} \quad P = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \][/tex]
For [tex]\(P\)[/tex]:
[tex]\[ P = \begin{pmatrix} 4 & 5 \\ 7 & 9 \end{pmatrix} \][/tex]
The determinant, [tex]\(\text{det}(P)\)[/tex], is given by:
[tex]\[ \text{det}(P) = 4 \cdot 9 - 5 \cdot 7 = 36 - 35 = 1 \][/tex]
Hence,
[tex]\[ P^{-1} = \begin{pmatrix} 9 & -5 \\ -7 & 4 \end{pmatrix} \][/tex]
### Step 3: Calculate the inverse of [tex]\(Q\)[/tex]
Similarly, we calculate the inverse of matrix [tex]\(Q\)[/tex]:
[tex]\[ Q = \begin{pmatrix} 6 & 7 \\ 8 & 9 \end{pmatrix} \][/tex]
The determinant, [tex]\(\text{det}(Q)\)[/tex], is given by:
[tex]\[ \text{det}(Q) = 6 \cdot 9 - 7 \cdot 8 = 54 - 56 = -2 \][/tex]
Thus,
[tex]\[ Q^{-1} = \frac{1}{-2} \begin{pmatrix} 9 & -7 \\ -8 & 6 \end{pmatrix} = \begin{pmatrix} -4.5 & 3.5 \\ 4 & -3 \end{pmatrix} \][/tex]
### Step 4: Calculate the product [tex]\(Q^{-1} P^{-1}\)[/tex]
We now find the product of the inverses [tex]\(Q^{-1} P^{-1}\)[/tex]:
[tex]\[ Q^{-1} P^{-1} = \begin{pmatrix} -4.5 & 3.5 \\ 4 & -3 \end{pmatrix} \begin{pmatrix} 9 & -5 \\ -7 & 4 \end{pmatrix} \][/tex]
We calculate each element of the resulting matrix:
- The element in the first row, first column is [tex]\((-4.5 \cdot 9) + (3.5 \cdot -7) = -40.5 - 24.5 = -65\)[/tex]
- The element in the first row, second column is [tex]\((-4.5 \cdot -5) + (3.5 \cdot 4) = 22.5 + 14 = 36.5\)[/tex]
- The element in the second row, first column is [tex]\((4 \cdot 9) + (-3 \cdot -7) = 36 + 21 = 57\)[/tex]
- The element in the second row, second column is [tex]\((4 \cdot -5) + (-3 \cdot 4) = -20 - 12 = -32\)[/tex]
Thus,
[tex]\[ Q^{-1} P^{-1} = \begin{pmatrix} -65 & 36.5 \\ 57 & -32 \end{pmatrix} \][/tex]
### Step 5: Calculate the inverse of [tex]\(PQ\)[/tex]
Finally, we calculate the inverse of the product [tex]\(PQ \)[/tex]:
[tex]\[ PQ = \begin{pmatrix} 64 & 73 \\ 114 & 130 \end{pmatrix} \][/tex]
The determinant, [tex]\(\text{det}(PQ)\)[/tex], is:
[tex]\[ \text{det}(PQ) = 64 \cdot 130 - 73 \cdot 114 = 8320 - 8322 = -2 \][/tex]
Thus,
[tex]\[ (PQ)^{-1} = \frac{1}{-2} \begin{pmatrix} 130 & -73 \\ -114 & 64 \end{pmatrix} = \begin{pmatrix} -65 & 36.5 \\ 57 & -32 \end{pmatrix} \][/tex]
### Conclusion
Since:
[tex]\[ (PQ)^{-1} = \begin{pmatrix} -65 & 36.5 \\ 57 & -32 \end{pmatrix} \][/tex]
and
[tex]\[ Q^{-1} P^{-1} = \begin{pmatrix} -65 & 36.5 \\ 57 & -32 \end{pmatrix} \][/tex]
We have verified that:
[tex]\[ (PQ)^{-1} = Q^{-1} P^{-1} \][/tex]
This completes the solution!
Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Thank you for trusting Westonci.ca. Don't forget to revisit us for more accurate and insightful answers.