Explore Westonci.ca, the top Q&A platform where your questions are answered by professionals and enthusiasts alike. Explore a wealth of knowledge from professionals across various disciplines on our comprehensive Q&A platform. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.
Sagot :
Certainly! Let's verify the given statement: [tex]\((PQ)^{-1} = Q^{-1} P^{-1}\)[/tex] where the matrices [tex]\(P\)[/tex] and [tex]\(Q\)[/tex] are defined as follows:
[tex]\[ P = \begin{pmatrix} 4 & 5 \\ 7 & 9 \end{pmatrix} \][/tex]
[tex]\[ Q = \begin{pmatrix} 6 & 7 \\ 8 & 9 \end{pmatrix} \][/tex]
### Step 1: Calculate the product [tex]\(PQ\)[/tex]
First, we compute the matrix product [tex]\(PQ\)[/tex]:
[tex]\[ PQ = \begin{pmatrix} 4 & 5 \\ 7 & 9 \end{pmatrix} \begin{pmatrix} 6 & 7 \\ 8 & 9 \end{pmatrix} \][/tex]
We can find each element of the resulting matrix [tex]\(PQ\)[/tex] as follows:
- The element in the first row, first column is [tex]\(4 \cdot 6 + 5 \cdot 8 = 24 + 40 = 64\)[/tex]
- The element in the first row, second column is [tex]\(4 \cdot 7 + 5 \cdot 9 = 28 + 45 = 73\)[/tex]
- The element in the second row, first column is [tex]\(7 \cdot 6 + 9 \cdot 8 = 42 + 72 = 114\)[/tex]
- The element in the second row, second column is [tex]\(7 \cdot 7 + 9 \cdot 9 = 49 + 81 = 130\)[/tex]
Thus,
[tex]\[ PQ = \begin{pmatrix} 64 & 73 \\ 114 & 130 \end{pmatrix} \][/tex]
### Step 2: Calculate the inverse of [tex]\(P\)[/tex]
Next, we compute the inverse of matrix [tex]\(P\)[/tex]. We use the formula for the inverse of a [tex]\(2 \times 2\)[/tex] matrix:
[tex]\[ P^{-1} = \frac{1}{\text{det}(P)} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix} \quad \text{where} \quad P = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \][/tex]
For [tex]\(P\)[/tex]:
[tex]\[ P = \begin{pmatrix} 4 & 5 \\ 7 & 9 \end{pmatrix} \][/tex]
The determinant, [tex]\(\text{det}(P)\)[/tex], is given by:
[tex]\[ \text{det}(P) = 4 \cdot 9 - 5 \cdot 7 = 36 - 35 = 1 \][/tex]
Hence,
[tex]\[ P^{-1} = \begin{pmatrix} 9 & -5 \\ -7 & 4 \end{pmatrix} \][/tex]
### Step 3: Calculate the inverse of [tex]\(Q\)[/tex]
Similarly, we calculate the inverse of matrix [tex]\(Q\)[/tex]:
[tex]\[ Q = \begin{pmatrix} 6 & 7 \\ 8 & 9 \end{pmatrix} \][/tex]
The determinant, [tex]\(\text{det}(Q)\)[/tex], is given by:
[tex]\[ \text{det}(Q) = 6 \cdot 9 - 7 \cdot 8 = 54 - 56 = -2 \][/tex]
Thus,
[tex]\[ Q^{-1} = \frac{1}{-2} \begin{pmatrix} 9 & -7 \\ -8 & 6 \end{pmatrix} = \begin{pmatrix} -4.5 & 3.5 \\ 4 & -3 \end{pmatrix} \][/tex]
### Step 4: Calculate the product [tex]\(Q^{-1} P^{-1}\)[/tex]
We now find the product of the inverses [tex]\(Q^{-1} P^{-1}\)[/tex]:
[tex]\[ Q^{-1} P^{-1} = \begin{pmatrix} -4.5 & 3.5 \\ 4 & -3 \end{pmatrix} \begin{pmatrix} 9 & -5 \\ -7 & 4 \end{pmatrix} \][/tex]
We calculate each element of the resulting matrix:
- The element in the first row, first column is [tex]\((-4.5 \cdot 9) + (3.5 \cdot -7) = -40.5 - 24.5 = -65\)[/tex]
- The element in the first row, second column is [tex]\((-4.5 \cdot -5) + (3.5 \cdot 4) = 22.5 + 14 = 36.5\)[/tex]
- The element in the second row, first column is [tex]\((4 \cdot 9) + (-3 \cdot -7) = 36 + 21 = 57\)[/tex]
- The element in the second row, second column is [tex]\((4 \cdot -5) + (-3 \cdot 4) = -20 - 12 = -32\)[/tex]
Thus,
[tex]\[ Q^{-1} P^{-1} = \begin{pmatrix} -65 & 36.5 \\ 57 & -32 \end{pmatrix} \][/tex]
### Step 5: Calculate the inverse of [tex]\(PQ\)[/tex]
Finally, we calculate the inverse of the product [tex]\(PQ \)[/tex]:
[tex]\[ PQ = \begin{pmatrix} 64 & 73 \\ 114 & 130 \end{pmatrix} \][/tex]
The determinant, [tex]\(\text{det}(PQ)\)[/tex], is:
[tex]\[ \text{det}(PQ) = 64 \cdot 130 - 73 \cdot 114 = 8320 - 8322 = -2 \][/tex]
Thus,
[tex]\[ (PQ)^{-1} = \frac{1}{-2} \begin{pmatrix} 130 & -73 \\ -114 & 64 \end{pmatrix} = \begin{pmatrix} -65 & 36.5 \\ 57 & -32 \end{pmatrix} \][/tex]
### Conclusion
Since:
[tex]\[ (PQ)^{-1} = \begin{pmatrix} -65 & 36.5 \\ 57 & -32 \end{pmatrix} \][/tex]
and
[tex]\[ Q^{-1} P^{-1} = \begin{pmatrix} -65 & 36.5 \\ 57 & -32 \end{pmatrix} \][/tex]
We have verified that:
[tex]\[ (PQ)^{-1} = Q^{-1} P^{-1} \][/tex]
This completes the solution!
[tex]\[ P = \begin{pmatrix} 4 & 5 \\ 7 & 9 \end{pmatrix} \][/tex]
[tex]\[ Q = \begin{pmatrix} 6 & 7 \\ 8 & 9 \end{pmatrix} \][/tex]
### Step 1: Calculate the product [tex]\(PQ\)[/tex]
First, we compute the matrix product [tex]\(PQ\)[/tex]:
[tex]\[ PQ = \begin{pmatrix} 4 & 5 \\ 7 & 9 \end{pmatrix} \begin{pmatrix} 6 & 7 \\ 8 & 9 \end{pmatrix} \][/tex]
We can find each element of the resulting matrix [tex]\(PQ\)[/tex] as follows:
- The element in the first row, first column is [tex]\(4 \cdot 6 + 5 \cdot 8 = 24 + 40 = 64\)[/tex]
- The element in the first row, second column is [tex]\(4 \cdot 7 + 5 \cdot 9 = 28 + 45 = 73\)[/tex]
- The element in the second row, first column is [tex]\(7 \cdot 6 + 9 \cdot 8 = 42 + 72 = 114\)[/tex]
- The element in the second row, second column is [tex]\(7 \cdot 7 + 9 \cdot 9 = 49 + 81 = 130\)[/tex]
Thus,
[tex]\[ PQ = \begin{pmatrix} 64 & 73 \\ 114 & 130 \end{pmatrix} \][/tex]
### Step 2: Calculate the inverse of [tex]\(P\)[/tex]
Next, we compute the inverse of matrix [tex]\(P\)[/tex]. We use the formula for the inverse of a [tex]\(2 \times 2\)[/tex] matrix:
[tex]\[ P^{-1} = \frac{1}{\text{det}(P)} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix} \quad \text{where} \quad P = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \][/tex]
For [tex]\(P\)[/tex]:
[tex]\[ P = \begin{pmatrix} 4 & 5 \\ 7 & 9 \end{pmatrix} \][/tex]
The determinant, [tex]\(\text{det}(P)\)[/tex], is given by:
[tex]\[ \text{det}(P) = 4 \cdot 9 - 5 \cdot 7 = 36 - 35 = 1 \][/tex]
Hence,
[tex]\[ P^{-1} = \begin{pmatrix} 9 & -5 \\ -7 & 4 \end{pmatrix} \][/tex]
### Step 3: Calculate the inverse of [tex]\(Q\)[/tex]
Similarly, we calculate the inverse of matrix [tex]\(Q\)[/tex]:
[tex]\[ Q = \begin{pmatrix} 6 & 7 \\ 8 & 9 \end{pmatrix} \][/tex]
The determinant, [tex]\(\text{det}(Q)\)[/tex], is given by:
[tex]\[ \text{det}(Q) = 6 \cdot 9 - 7 \cdot 8 = 54 - 56 = -2 \][/tex]
Thus,
[tex]\[ Q^{-1} = \frac{1}{-2} \begin{pmatrix} 9 & -7 \\ -8 & 6 \end{pmatrix} = \begin{pmatrix} -4.5 & 3.5 \\ 4 & -3 \end{pmatrix} \][/tex]
### Step 4: Calculate the product [tex]\(Q^{-1} P^{-1}\)[/tex]
We now find the product of the inverses [tex]\(Q^{-1} P^{-1}\)[/tex]:
[tex]\[ Q^{-1} P^{-1} = \begin{pmatrix} -4.5 & 3.5 \\ 4 & -3 \end{pmatrix} \begin{pmatrix} 9 & -5 \\ -7 & 4 \end{pmatrix} \][/tex]
We calculate each element of the resulting matrix:
- The element in the first row, first column is [tex]\((-4.5 \cdot 9) + (3.5 \cdot -7) = -40.5 - 24.5 = -65\)[/tex]
- The element in the first row, second column is [tex]\((-4.5 \cdot -5) + (3.5 \cdot 4) = 22.5 + 14 = 36.5\)[/tex]
- The element in the second row, first column is [tex]\((4 \cdot 9) + (-3 \cdot -7) = 36 + 21 = 57\)[/tex]
- The element in the second row, second column is [tex]\((4 \cdot -5) + (-3 \cdot 4) = -20 - 12 = -32\)[/tex]
Thus,
[tex]\[ Q^{-1} P^{-1} = \begin{pmatrix} -65 & 36.5 \\ 57 & -32 \end{pmatrix} \][/tex]
### Step 5: Calculate the inverse of [tex]\(PQ\)[/tex]
Finally, we calculate the inverse of the product [tex]\(PQ \)[/tex]:
[tex]\[ PQ = \begin{pmatrix} 64 & 73 \\ 114 & 130 \end{pmatrix} \][/tex]
The determinant, [tex]\(\text{det}(PQ)\)[/tex], is:
[tex]\[ \text{det}(PQ) = 64 \cdot 130 - 73 \cdot 114 = 8320 - 8322 = -2 \][/tex]
Thus,
[tex]\[ (PQ)^{-1} = \frac{1}{-2} \begin{pmatrix} 130 & -73 \\ -114 & 64 \end{pmatrix} = \begin{pmatrix} -65 & 36.5 \\ 57 & -32 \end{pmatrix} \][/tex]
### Conclusion
Since:
[tex]\[ (PQ)^{-1} = \begin{pmatrix} -65 & 36.5 \\ 57 & -32 \end{pmatrix} \][/tex]
and
[tex]\[ Q^{-1} P^{-1} = \begin{pmatrix} -65 & 36.5 \\ 57 & -32 \end{pmatrix} \][/tex]
We have verified that:
[tex]\[ (PQ)^{-1} = Q^{-1} P^{-1} \][/tex]
This completes the solution!
Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Thank you for using Westonci.ca. Come back for more in-depth answers to all your queries.