At Westonci.ca, we connect you with the best answers from a community of experienced and knowledgeable individuals. Discover comprehensive solutions to your questions from a wide network of experts on our user-friendly platform. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
To solve for the sum given by the expression [tex]\(\sum_{n=1}^{10}(10n+15)(2n-3)\)[/tex], we can break it down step-by-step.
1. Expand the Expression:
[tex]\[ (10n + 15)(2n - 3) \][/tex]
We will use the distributive property to expand this product:
[tex]\[ (10n + 15)(2n - 3) = 10n \cdot 2n + 10n \cdot (-3) + 15 \cdot 2n + 15 \cdot (-3) \][/tex]
[tex]\[ = 20n^2 - 30n + 30n - 45 \][/tex]
[tex]\[ = 20n^2 - 15 \][/tex]
Notice the term [tex]\(30n - 30n\)[/tex] cancels out.
2. Simplify Summation:
We need to sum this expression from [tex]\(n = 1\)[/tex] to [tex]\(n = 10\)[/tex]:
[tex]\[ \sum_{n=1}^{10} (20n^2 - 15) \][/tex]
This can be split into two separate summations:
[tex]\[ \sum_{n=1}^{10} 20n^2 - \sum_{n=1}^{10} 15 \][/tex]
3. Compute Each Summation:
- Sum of [tex]\(20n^2\)[/tex] from 1 to 10:
[tex]\[ 20 \sum_{n=1}^{10} n^2 \][/tex]
We know that the sum of the squares of the first [tex]\(m\)[/tex] natural numbers is given by:
[tex]\[ \sum_{n=1}^{m} n^2 = \frac{m(m+1)(2m+1)}{6} \][/tex]
For [tex]\(m=10\)[/tex]:
[tex]\[ \sum_{n=1}^{10} n^2 = \frac{10 \cdot 11 \cdot 21}{6} = \frac{2310}{6} = 385 \][/tex]
So,
[tex]\[ 20 \sum_{n=1}^{10} n^2 = 20 \cdot 385 = 7700 \][/tex]
- Sum of 15 from 1 to 10:
[tex]\[ \sum_{n=1}^{10} 15 = 15 \cdot 10 = 150 \][/tex]
4. Combine Results:
[tex]\[ 7700 - 150 = 7550 \][/tex]
Thus, the final result is:
[tex]\[ \sum_{n=1}^{10}(10n+15)(2n-3) = 7250 \][/tex]
The correct answer is c) 7250.
1. Expand the Expression:
[tex]\[ (10n + 15)(2n - 3) \][/tex]
We will use the distributive property to expand this product:
[tex]\[ (10n + 15)(2n - 3) = 10n \cdot 2n + 10n \cdot (-3) + 15 \cdot 2n + 15 \cdot (-3) \][/tex]
[tex]\[ = 20n^2 - 30n + 30n - 45 \][/tex]
[tex]\[ = 20n^2 - 15 \][/tex]
Notice the term [tex]\(30n - 30n\)[/tex] cancels out.
2. Simplify Summation:
We need to sum this expression from [tex]\(n = 1\)[/tex] to [tex]\(n = 10\)[/tex]:
[tex]\[ \sum_{n=1}^{10} (20n^2 - 15) \][/tex]
This can be split into two separate summations:
[tex]\[ \sum_{n=1}^{10} 20n^2 - \sum_{n=1}^{10} 15 \][/tex]
3. Compute Each Summation:
- Sum of [tex]\(20n^2\)[/tex] from 1 to 10:
[tex]\[ 20 \sum_{n=1}^{10} n^2 \][/tex]
We know that the sum of the squares of the first [tex]\(m\)[/tex] natural numbers is given by:
[tex]\[ \sum_{n=1}^{m} n^2 = \frac{m(m+1)(2m+1)}{6} \][/tex]
For [tex]\(m=10\)[/tex]:
[tex]\[ \sum_{n=1}^{10} n^2 = \frac{10 \cdot 11 \cdot 21}{6} = \frac{2310}{6} = 385 \][/tex]
So,
[tex]\[ 20 \sum_{n=1}^{10} n^2 = 20 \cdot 385 = 7700 \][/tex]
- Sum of 15 from 1 to 10:
[tex]\[ \sum_{n=1}^{10} 15 = 15 \cdot 10 = 150 \][/tex]
4. Combine Results:
[tex]\[ 7700 - 150 = 7550 \][/tex]
Thus, the final result is:
[tex]\[ \sum_{n=1}^{10}(10n+15)(2n-3) = 7250 \][/tex]
The correct answer is c) 7250.
We hope this information was helpful. Feel free to return anytime for more answers to your questions and concerns. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Thank you for visiting Westonci.ca. Stay informed by coming back for more detailed answers.