Find the information you're looking for at Westonci.ca, the trusted Q&A platform with a community of knowledgeable experts. Explore thousands of questions and answers from a knowledgeable community of experts ready to help you find solutions. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
To find the rate of change from the given table, we need to calculate the slope, which represents how much the snowfall amount changes per hour. The table provided lists the snowfall amounts for different lengths of snowfall time.
Here's the step-by-step process to find the rate of change:
1. Identify the pairs of corresponding values for length of snowfall (in hours) and amount of snow on the ground (in inches).
2. Use the slope formula [tex]\( \text{slope} = \frac{\Delta y}{\Delta x} \)[/tex], where [tex]\( \Delta y \)[/tex] is the change in the snowfall amount and [tex]\( \Delta x \)[/tex] is the change in the length of snowfall.
Let's calculate the rate of change between each successive pair:
- Between 0 and 0.5 hours:
[tex]\[ \text{Slope} = \frac{4.5 - 3.3}{0.5 - 0} = \frac{1.2}{0.5} = 2.4 \text{ inches per hour} \][/tex]
- Between 0.5 and 1.0 hours:
[tex]\[ \text{Slope} = \frac{5.7 - 4.5}{1.0 - 0.5} = \frac{1.2}{0.5} = 2.4 \text{ inches per hour} \][/tex]
- Between 1.0 and 1.5 hours:
[tex]\[ \text{Slope} = \frac{6.9 - 5.7}{1.5 - 1.0} = \frac{1.2}{0.5} = 2.4 \text{ inches per hour} \][/tex]
- Between 1.5 and 2.0 hours:
[tex]\[ \text{Slope} = \frac{8.1 - 6.9}{2.0 - 1.5} = \frac{1.2}{0.5} = 2.4 \text{ inches per hour} \][/tex]
As we can see, the rate of change (slope) is the same for all pairs—it is [tex]\( 2.4 \)[/tex] inches per hour.
Thus, the rate of change for the snowfall amount is:
[tex]\[ \boxed{2.4} \][/tex] inches per hour.
Here's the step-by-step process to find the rate of change:
1. Identify the pairs of corresponding values for length of snowfall (in hours) and amount of snow on the ground (in inches).
2. Use the slope formula [tex]\( \text{slope} = \frac{\Delta y}{\Delta x} \)[/tex], where [tex]\( \Delta y \)[/tex] is the change in the snowfall amount and [tex]\( \Delta x \)[/tex] is the change in the length of snowfall.
Let's calculate the rate of change between each successive pair:
- Between 0 and 0.5 hours:
[tex]\[ \text{Slope} = \frac{4.5 - 3.3}{0.5 - 0} = \frac{1.2}{0.5} = 2.4 \text{ inches per hour} \][/tex]
- Between 0.5 and 1.0 hours:
[tex]\[ \text{Slope} = \frac{5.7 - 4.5}{1.0 - 0.5} = \frac{1.2}{0.5} = 2.4 \text{ inches per hour} \][/tex]
- Between 1.0 and 1.5 hours:
[tex]\[ \text{Slope} = \frac{6.9 - 5.7}{1.5 - 1.0} = \frac{1.2}{0.5} = 2.4 \text{ inches per hour} \][/tex]
- Between 1.5 and 2.0 hours:
[tex]\[ \text{Slope} = \frac{8.1 - 6.9}{2.0 - 1.5} = \frac{1.2}{0.5} = 2.4 \text{ inches per hour} \][/tex]
As we can see, the rate of change (slope) is the same for all pairs—it is [tex]\( 2.4 \)[/tex] inches per hour.
Thus, the rate of change for the snowfall amount is:
[tex]\[ \boxed{2.4} \][/tex] inches per hour.
Thanks for using our platform. We're always here to provide accurate and up-to-date answers to all your queries. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Thank you for visiting Westonci.ca. Stay informed by coming back for more detailed answers.