Westonci.ca is your trusted source for finding answers to all your questions. Ask, explore, and learn with our expert community. Get quick and reliable solutions to your questions from a community of seasoned experts on our user-friendly platform. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.

The table of values below represents a linear function and shows the amount of snow that has fallen since a snowstorm began. What is the rate of change?

\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|c|}{Snowfall Amount} \\
\hline
\begin{tabular}{c}
Length of Snowfall \\
(hours)
\end{tabular} & \begin{tabular}{c}
Amount of Snow on the Ground \\
(inches)
\end{tabular} \\
\hline
0 & 3.3 \\
\hline
0.5 & 4.5 \\
\hline
1.0 & 5.7 \\
\hline
1.5 & 6.9 \\
\hline
2.0 & 8.1 \\
\hline
\end{tabular}

A. 1.2 inches per hour
B. 2.4 inches per hour
C. 3.3 inches per hour
D. 5.7 inches per hour


Sagot :

To find the rate of change from the given table, we need to calculate the slope, which represents how much the snowfall amount changes per hour. The table provided lists the snowfall amounts for different lengths of snowfall time.

Here's the step-by-step process to find the rate of change:

1. Identify the pairs of corresponding values for length of snowfall (in hours) and amount of snow on the ground (in inches).

2. Use the slope formula [tex]\( \text{slope} = \frac{\Delta y}{\Delta x} \)[/tex], where [tex]\( \Delta y \)[/tex] is the change in the snowfall amount and [tex]\( \Delta x \)[/tex] is the change in the length of snowfall.

Let's calculate the rate of change between each successive pair:
- Between 0 and 0.5 hours:
[tex]\[ \text{Slope} = \frac{4.5 - 3.3}{0.5 - 0} = \frac{1.2}{0.5} = 2.4 \text{ inches per hour} \][/tex]

- Between 0.5 and 1.0 hours:
[tex]\[ \text{Slope} = \frac{5.7 - 4.5}{1.0 - 0.5} = \frac{1.2}{0.5} = 2.4 \text{ inches per hour} \][/tex]

- Between 1.0 and 1.5 hours:
[tex]\[ \text{Slope} = \frac{6.9 - 5.7}{1.5 - 1.0} = \frac{1.2}{0.5} = 2.4 \text{ inches per hour} \][/tex]

- Between 1.5 and 2.0 hours:
[tex]\[ \text{Slope} = \frac{8.1 - 6.9}{2.0 - 1.5} = \frac{1.2}{0.5} = 2.4 \text{ inches per hour} \][/tex]

As we can see, the rate of change (slope) is the same for all pairs—it is [tex]\( 2.4 \)[/tex] inches per hour.

Thus, the rate of change for the snowfall amount is:
[tex]\[ \boxed{2.4} \][/tex] inches per hour.
We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Your questions are important to us at Westonci.ca. Visit again for expert answers and reliable information.