Welcome to Westonci.ca, where your questions are met with accurate answers from a community of experts and enthusiasts. Explore a wealth of knowledge from professionals across various disciplines on our comprehensive Q&A platform. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.

Consider circle [tex]$Y$[/tex] with radius [tex]$3 \, \text{m}$[/tex] and central angle [tex]$XYZ$[/tex] measuring [tex]$70^{\circ}$[/tex].

What is the approximate length of minor arc [tex]$XZ$[/tex]? Round to the nearest tenth of a meter.

A. 1.8 meters
B. 3.7 meters
C. 15.2 meters
D. 18.8 meters


Sagot :

To determine the length of the minor arc [tex]\(XZ\)[/tex] in circle [tex]\(Y\)[/tex] with a given central angle [tex]\(X Y Z\)[/tex] of [tex]\(70^{\circ}\)[/tex] and a radius of [tex]\(3\)[/tex] meters, follow these steps:

1. Calculate the circumference of the entire circle:
The formula to find the circumference [tex]\(C\)[/tex] of a circle is given by:
[tex]\[ C = 2 \times \pi \times \text{radius} \][/tex]
Substituting the given radius [tex]\(r\)[/tex] of [tex]\(3\)[/tex] meters:
[tex]\[ C = 2 \times \pi \times 3 = 6\pi \approx 18.84955592153876 \text{ meters} \][/tex]

2. Determine the fraction of the circle represented by the central angle:

Since the central angle is [tex]\(70^{\circ}\)[/tex] and a full circle is [tex]\(360^{\circ}\)[/tex]:
[tex]\[ \text{Fraction} = \frac{70}{360} = \frac{7}{36} \approx 0.19444444444444445 \][/tex]

3. Calculate the length of the minor arc [tex]\(XZ\)[/tex]:

The length of the arc is the circumference multiplied by the fraction of the circle represented by the angle:
[tex]\[ \text{Arc length} = C \times \text{Fraction} \][/tex]
Substituting the values:
[tex]\[ \text{Arc length} \approx 18.84955592153876 \times 0.19444444444444445 \approx 3.7 \text{ meters} \][/tex]

Hence, the approximate length of the minor arc [tex]\(XZ\)[/tex], rounded to the nearest tenth of a meter, is:

[tex]\[ \boxed{3.7 \text{ meters}} \][/tex]