Welcome to Westonci.ca, where your questions are met with accurate answers from a community of experts and enthusiasts. Explore a wealth of knowledge from professionals across various disciplines on our comprehensive Q&A platform. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
To determine the length of the minor arc [tex]\(XZ\)[/tex] in circle [tex]\(Y\)[/tex] with a given central angle [tex]\(X Y Z\)[/tex] of [tex]\(70^{\circ}\)[/tex] and a radius of [tex]\(3\)[/tex] meters, follow these steps:
1. Calculate the circumference of the entire circle:
The formula to find the circumference [tex]\(C\)[/tex] of a circle is given by:
[tex]\[ C = 2 \times \pi \times \text{radius} \][/tex]
Substituting the given radius [tex]\(r\)[/tex] of [tex]\(3\)[/tex] meters:
[tex]\[ C = 2 \times \pi \times 3 = 6\pi \approx 18.84955592153876 \text{ meters} \][/tex]
2. Determine the fraction of the circle represented by the central angle:
Since the central angle is [tex]\(70^{\circ}\)[/tex] and a full circle is [tex]\(360^{\circ}\)[/tex]:
[tex]\[ \text{Fraction} = \frac{70}{360} = \frac{7}{36} \approx 0.19444444444444445 \][/tex]
3. Calculate the length of the minor arc [tex]\(XZ\)[/tex]:
The length of the arc is the circumference multiplied by the fraction of the circle represented by the angle:
[tex]\[ \text{Arc length} = C \times \text{Fraction} \][/tex]
Substituting the values:
[tex]\[ \text{Arc length} \approx 18.84955592153876 \times 0.19444444444444445 \approx 3.7 \text{ meters} \][/tex]
Hence, the approximate length of the minor arc [tex]\(XZ\)[/tex], rounded to the nearest tenth of a meter, is:
[tex]\[ \boxed{3.7 \text{ meters}} \][/tex]
1. Calculate the circumference of the entire circle:
The formula to find the circumference [tex]\(C\)[/tex] of a circle is given by:
[tex]\[ C = 2 \times \pi \times \text{radius} \][/tex]
Substituting the given radius [tex]\(r\)[/tex] of [tex]\(3\)[/tex] meters:
[tex]\[ C = 2 \times \pi \times 3 = 6\pi \approx 18.84955592153876 \text{ meters} \][/tex]
2. Determine the fraction of the circle represented by the central angle:
Since the central angle is [tex]\(70^{\circ}\)[/tex] and a full circle is [tex]\(360^{\circ}\)[/tex]:
[tex]\[ \text{Fraction} = \frac{70}{360} = \frac{7}{36} \approx 0.19444444444444445 \][/tex]
3. Calculate the length of the minor arc [tex]\(XZ\)[/tex]:
The length of the arc is the circumference multiplied by the fraction of the circle represented by the angle:
[tex]\[ \text{Arc length} = C \times \text{Fraction} \][/tex]
Substituting the values:
[tex]\[ \text{Arc length} \approx 18.84955592153876 \times 0.19444444444444445 \approx 3.7 \text{ meters} \][/tex]
Hence, the approximate length of the minor arc [tex]\(XZ\)[/tex], rounded to the nearest tenth of a meter, is:
[tex]\[ \boxed{3.7 \text{ meters}} \][/tex]
We hope this was helpful. Please come back whenever you need more information or answers to your queries. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Westonci.ca is here to provide the answers you seek. Return often for more expert solutions.