Explore Westonci.ca, the top Q&A platform where your questions are answered by professionals and enthusiasts alike. Discover comprehensive solutions to your questions from a wide network of experts on our user-friendly platform. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
Certainly! Let's go through the problem step-by-step to find out how many moles of [tex]\( O_2 \)[/tex] are needed to react completely with 3.4 moles of [tex]\( C_4H_{10} \)[/tex].
### Step 1: Understand the balanced chemical equation
The balanced chemical equation is:
[tex]\[ 2 C_4H_{10}(g) + 13 O_2(g) \rightarrow 8 CO_2(g) + 10 H_2O(g) \][/tex]
From this equation, we can see that 2 moles of [tex]\( C_4H_{10} \)[/tex] requires 13 moles of [tex]\( O_2 \)[/tex].
### Step 2: Set up the molar ratio
The molar ratio of [tex]\( O_2 \)[/tex] to [tex]\( C_4H_{10} \)[/tex] from the balanced equation is:
[tex]\[ \frac{13 \text{ moles of } O_2}{2 \text{ moles of } C_4H_{10}} \][/tex]
### Step 3: Use the given amount of [tex]\( C_4H_{10} \)[/tex]
We need to find how many moles of [tex]\( O_2 \)[/tex] are required for 3.4 moles of [tex]\( C_4H_{10} \)[/tex]. Using the molar ratio from Step 2:
[tex]\[ \text{Moles of } O_2 \text{ needed} = \left(\frac{13}{2}\right) \times 3.4 \][/tex]
### Step 4: Perform the calculation
Calculating the moles of [tex]\( O_2 \)[/tex] needed:
[tex]\[ \text{Moles of } O_2 \text{ needed} = \frac{13}{2} \times 3.4 = 6.5 \times 3.4 = 22.1 \][/tex]
Thus, the moles of [tex]\( O_2 \)[/tex] needed to react completely with 3.4 moles of [tex]\( C_4H_{10} \)[/tex] is 22.1 when rounded to 2 significant figures.
### Conclusion
To react completely with 3.4 moles of [tex]\( C_4H_{10} \)[/tex], 22.1 moles of [tex]\( O_2 \)[/tex] are needed, rounded to 2 significant figures.
### Step 1: Understand the balanced chemical equation
The balanced chemical equation is:
[tex]\[ 2 C_4H_{10}(g) + 13 O_2(g) \rightarrow 8 CO_2(g) + 10 H_2O(g) \][/tex]
From this equation, we can see that 2 moles of [tex]\( C_4H_{10} \)[/tex] requires 13 moles of [tex]\( O_2 \)[/tex].
### Step 2: Set up the molar ratio
The molar ratio of [tex]\( O_2 \)[/tex] to [tex]\( C_4H_{10} \)[/tex] from the balanced equation is:
[tex]\[ \frac{13 \text{ moles of } O_2}{2 \text{ moles of } C_4H_{10}} \][/tex]
### Step 3: Use the given amount of [tex]\( C_4H_{10} \)[/tex]
We need to find how many moles of [tex]\( O_2 \)[/tex] are required for 3.4 moles of [tex]\( C_4H_{10} \)[/tex]. Using the molar ratio from Step 2:
[tex]\[ \text{Moles of } O_2 \text{ needed} = \left(\frac{13}{2}\right) \times 3.4 \][/tex]
### Step 4: Perform the calculation
Calculating the moles of [tex]\( O_2 \)[/tex] needed:
[tex]\[ \text{Moles of } O_2 \text{ needed} = \frac{13}{2} \times 3.4 = 6.5 \times 3.4 = 22.1 \][/tex]
Thus, the moles of [tex]\( O_2 \)[/tex] needed to react completely with 3.4 moles of [tex]\( C_4H_{10} \)[/tex] is 22.1 when rounded to 2 significant figures.
### Conclusion
To react completely with 3.4 moles of [tex]\( C_4H_{10} \)[/tex], 22.1 moles of [tex]\( O_2 \)[/tex] are needed, rounded to 2 significant figures.
Thank you for trusting us with your questions. We're here to help you find accurate answers quickly and efficiently. Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Westonci.ca is committed to providing accurate answers. Come back soon for more trustworthy information.