Discover a wealth of knowledge at Westonci.ca, where experts provide answers to your most pressing questions. Find reliable answers to your questions from a wide community of knowledgeable experts on our user-friendly Q&A platform. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
Certainly! Let's go through the problem step-by-step to find out how many moles of [tex]\( O_2 \)[/tex] are needed to react completely with 3.4 moles of [tex]\( C_4H_{10} \)[/tex].
### Step 1: Understand the balanced chemical equation
The balanced chemical equation is:
[tex]\[ 2 C_4H_{10}(g) + 13 O_2(g) \rightarrow 8 CO_2(g) + 10 H_2O(g) \][/tex]
From this equation, we can see that 2 moles of [tex]\( C_4H_{10} \)[/tex] requires 13 moles of [tex]\( O_2 \)[/tex].
### Step 2: Set up the molar ratio
The molar ratio of [tex]\( O_2 \)[/tex] to [tex]\( C_4H_{10} \)[/tex] from the balanced equation is:
[tex]\[ \frac{13 \text{ moles of } O_2}{2 \text{ moles of } C_4H_{10}} \][/tex]
### Step 3: Use the given amount of [tex]\( C_4H_{10} \)[/tex]
We need to find how many moles of [tex]\( O_2 \)[/tex] are required for 3.4 moles of [tex]\( C_4H_{10} \)[/tex]. Using the molar ratio from Step 2:
[tex]\[ \text{Moles of } O_2 \text{ needed} = \left(\frac{13}{2}\right) \times 3.4 \][/tex]
### Step 4: Perform the calculation
Calculating the moles of [tex]\( O_2 \)[/tex] needed:
[tex]\[ \text{Moles of } O_2 \text{ needed} = \frac{13}{2} \times 3.4 = 6.5 \times 3.4 = 22.1 \][/tex]
Thus, the moles of [tex]\( O_2 \)[/tex] needed to react completely with 3.4 moles of [tex]\( C_4H_{10} \)[/tex] is 22.1 when rounded to 2 significant figures.
### Conclusion
To react completely with 3.4 moles of [tex]\( C_4H_{10} \)[/tex], 22.1 moles of [tex]\( O_2 \)[/tex] are needed, rounded to 2 significant figures.
### Step 1: Understand the balanced chemical equation
The balanced chemical equation is:
[tex]\[ 2 C_4H_{10}(g) + 13 O_2(g) \rightarrow 8 CO_2(g) + 10 H_2O(g) \][/tex]
From this equation, we can see that 2 moles of [tex]\( C_4H_{10} \)[/tex] requires 13 moles of [tex]\( O_2 \)[/tex].
### Step 2: Set up the molar ratio
The molar ratio of [tex]\( O_2 \)[/tex] to [tex]\( C_4H_{10} \)[/tex] from the balanced equation is:
[tex]\[ \frac{13 \text{ moles of } O_2}{2 \text{ moles of } C_4H_{10}} \][/tex]
### Step 3: Use the given amount of [tex]\( C_4H_{10} \)[/tex]
We need to find how many moles of [tex]\( O_2 \)[/tex] are required for 3.4 moles of [tex]\( C_4H_{10} \)[/tex]. Using the molar ratio from Step 2:
[tex]\[ \text{Moles of } O_2 \text{ needed} = \left(\frac{13}{2}\right) \times 3.4 \][/tex]
### Step 4: Perform the calculation
Calculating the moles of [tex]\( O_2 \)[/tex] needed:
[tex]\[ \text{Moles of } O_2 \text{ needed} = \frac{13}{2} \times 3.4 = 6.5 \times 3.4 = 22.1 \][/tex]
Thus, the moles of [tex]\( O_2 \)[/tex] needed to react completely with 3.4 moles of [tex]\( C_4H_{10} \)[/tex] is 22.1 when rounded to 2 significant figures.
### Conclusion
To react completely with 3.4 moles of [tex]\( C_4H_{10} \)[/tex], 22.1 moles of [tex]\( O_2 \)[/tex] are needed, rounded to 2 significant figures.
Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Thank you for trusting Westonci.ca. Don't forget to revisit us for more accurate and insightful answers.