Welcome to Westonci.ca, where your questions are met with accurate answers from a community of experts and enthusiasts. Experience the ease of finding reliable answers to your questions from a vast community of knowledgeable experts. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.
Sagot :
Para hallar el dominio y rango de la función [tex]\( f(x) = \frac{x^2 - 1}{x^2 + 4} \)[/tex], sigamos los siguientes pasos:
### Dominio:
El dominio de una función se refiere a todos los valores posibles que [tex]\( x \)[/tex] puede tomar.
1. Observamos la función [tex]\( f(x) = \frac{x^2 - 1}{x^2 + 4} \)[/tex].
2. El denominador es [tex]\( x^2 + 4 \)[/tex], y necesitamos asegurarnos de que nunca sea cero, ya que la división por cero no está definida.
3. Notamos que [tex]\( x^2 + 4 \)[/tex] siempre es mayor que cero para todos los números reales [tex]\( x \)[/tex], porque [tex]\( x^2 \)[/tex] es siempre no negativo y sumado con 4 siempre dará un número positivo.
Por lo tanto, el denominador nunca es cero para cualquier valor de [tex]\( x \)[/tex] en los números reales.
Dominio: Todos los números reales, es decir, [tex]\( (-\infty, \infty) \)[/tex].
### Rango:
Para encontrar el rango de la función, necesitamos determinar todos los valores posibles de [tex]\( y = f(x) \)[/tex].
1. Consideramos la función [tex]\( y = \frac{x^2 - 1}{x^2 + 4} \)[/tex].
2. Para buscar el rango, analizamos cómo se comporta la función a medida que [tex]\( x \)[/tex] toma diferentes valores.
#### Análisis de Comportamiento:
- Cuando [tex]\( x \)[/tex] tiende a infinito ([tex]\( +\infty \)[/tex]) o menos infinito ([tex]\( -\infty \)[/tex]), los términos [tex]\( x^2 \)[/tex] dominan tanto en el numerador como en el denominador:
[tex]\[ \lim_{{x \to \pm \infty}} \frac{x^2 - 1}{x^2 + 4} = \lim_{{x \to \pm \infty}} \frac{1 - \frac{1}{x^2}}{1 + \frac{4}{x^2}} = 1 \][/tex]
Por lo tanto, f(x) se aproxima a 1, pero nunca lo alcanza exactamente debido a los términos adicionales en el numerador y el denominador.
- Consideramos el comportamiento en el punto crítico y cómo la función se comporta en otros valores específicos:
- Observamos que cuando [tex]\( x = 0 \)[/tex], tenemos:
[tex]\[ f(0) = \frac{0^2 - 1}{0^2 + 4} = \frac{-1}{4} = -\frac{1}{4} \][/tex]
- Evaluamos cómo se comporta la función en otros puntos analizados, tales como cuando [tex]\( y = -1 \)[/tex]:
- Para [tex]\( y = -1 \)[/tex]:
[tex]\[ -1 = \frac{x^2 - 1}{x^2 + 4} \][/tex]
Llevamos a:
[tex]\[ -1(x^2 + 4) = x^2 - 1 \implies -x^2 - 4 = x^2 - 1 \implies -4 = 2x^2 - 1 \implies -3 = 2x^2 \implies x^2 = -\frac{3}{2} \][/tex]
Lo que no tiene solución en los números reales.
- Cuando [tex]\( y \)[/tex] se aproxima a valores cercanos a -1 y 1, la función puede aproximarse ambos valores en ciertos puntos críticos.
### Conclusión del Rango:
Los valores que toma la función [tex]\( f(x) \)[/tex] varían entre -1 y 1, ya que el comportamiento en los puntos críticos y a medida que x tiende a infinito, muestran esa propiedad.
Rango: [tex]\([-1, 1]\)[/tex].
Entonces, tenemos:
- Dominio: [tex]\(\left( -\infty, \infty \right) \)[/tex]
- Rango: [tex]\([-1, 1]\)[/tex]
### Dominio:
El dominio de una función se refiere a todos los valores posibles que [tex]\( x \)[/tex] puede tomar.
1. Observamos la función [tex]\( f(x) = \frac{x^2 - 1}{x^2 + 4} \)[/tex].
2. El denominador es [tex]\( x^2 + 4 \)[/tex], y necesitamos asegurarnos de que nunca sea cero, ya que la división por cero no está definida.
3. Notamos que [tex]\( x^2 + 4 \)[/tex] siempre es mayor que cero para todos los números reales [tex]\( x \)[/tex], porque [tex]\( x^2 \)[/tex] es siempre no negativo y sumado con 4 siempre dará un número positivo.
Por lo tanto, el denominador nunca es cero para cualquier valor de [tex]\( x \)[/tex] en los números reales.
Dominio: Todos los números reales, es decir, [tex]\( (-\infty, \infty) \)[/tex].
### Rango:
Para encontrar el rango de la función, necesitamos determinar todos los valores posibles de [tex]\( y = f(x) \)[/tex].
1. Consideramos la función [tex]\( y = \frac{x^2 - 1}{x^2 + 4} \)[/tex].
2. Para buscar el rango, analizamos cómo se comporta la función a medida que [tex]\( x \)[/tex] toma diferentes valores.
#### Análisis de Comportamiento:
- Cuando [tex]\( x \)[/tex] tiende a infinito ([tex]\( +\infty \)[/tex]) o menos infinito ([tex]\( -\infty \)[/tex]), los términos [tex]\( x^2 \)[/tex] dominan tanto en el numerador como en el denominador:
[tex]\[ \lim_{{x \to \pm \infty}} \frac{x^2 - 1}{x^2 + 4} = \lim_{{x \to \pm \infty}} \frac{1 - \frac{1}{x^2}}{1 + \frac{4}{x^2}} = 1 \][/tex]
Por lo tanto, f(x) se aproxima a 1, pero nunca lo alcanza exactamente debido a los términos adicionales en el numerador y el denominador.
- Consideramos el comportamiento en el punto crítico y cómo la función se comporta en otros valores específicos:
- Observamos que cuando [tex]\( x = 0 \)[/tex], tenemos:
[tex]\[ f(0) = \frac{0^2 - 1}{0^2 + 4} = \frac{-1}{4} = -\frac{1}{4} \][/tex]
- Evaluamos cómo se comporta la función en otros puntos analizados, tales como cuando [tex]\( y = -1 \)[/tex]:
- Para [tex]\( y = -1 \)[/tex]:
[tex]\[ -1 = \frac{x^2 - 1}{x^2 + 4} \][/tex]
Llevamos a:
[tex]\[ -1(x^2 + 4) = x^2 - 1 \implies -x^2 - 4 = x^2 - 1 \implies -4 = 2x^2 - 1 \implies -3 = 2x^2 \implies x^2 = -\frac{3}{2} \][/tex]
Lo que no tiene solución en los números reales.
- Cuando [tex]\( y \)[/tex] se aproxima a valores cercanos a -1 y 1, la función puede aproximarse ambos valores en ciertos puntos críticos.
### Conclusión del Rango:
Los valores que toma la función [tex]\( f(x) \)[/tex] varían entre -1 y 1, ya que el comportamiento en los puntos críticos y a medida que x tiende a infinito, muestran esa propiedad.
Rango: [tex]\([-1, 1]\)[/tex].
Entonces, tenemos:
- Dominio: [tex]\(\left( -\infty, \infty \right) \)[/tex]
- Rango: [tex]\([-1, 1]\)[/tex]
Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. We're here to help at Westonci.ca. Keep visiting for the best answers to your questions.