Welcome to Westonci.ca, your go-to destination for finding answers to all your questions. Join our expert community today! Our Q&A platform offers a seamless experience for finding reliable answers from experts in various disciplines. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
To demonstrate that the function [tex]\( v = \log(x^2 + y^2) \)[/tex] is harmonic and to find a function [tex]\( u \)[/tex] such that [tex]\( u + iv \)[/tex] is analytic, we'll go through the following steps:
1. Compute the first-order partial derivatives of [tex]\( v \)[/tex]:
[tex]\[ v_x = \frac{\partial v}{\partial x} = \frac{2x}{x^2 + y^2} \][/tex]
[tex]\[ v_y = \frac{\partial v}{\partial y} = \frac{2y}{x^2 + y^2} \][/tex]
2. Compute the second-order partial derivatives of [tex]\( v \)[/tex]:
[tex]\[ v_{xx} = \frac{\partial^2 v}{\partial x^2} = \frac{\partial}{\partial x} \left( \frac{2x}{x^2 + y^2} \right) \][/tex]
[tex]\[ \frac{\partial}{\partial x} \left( \frac{2x}{x^2 + y^2} \right) = \frac{(x^2 + y^2) \cdot 2 - 2x \cdot 2x}{(x^2 + y^2)^2} = \frac{2(x^2 + y^2) - 4x^2}{(x^2 + y^2)^2} = \frac{2x^2 + 2y^2 - 4x^2}{(x^2 + y^2)^2} = \frac{-2x^2 + 2y^2}{(x^2 + y^2)^2} \][/tex]
Thus:
[tex]\[ v_{xx} = -\frac{4x^2}{(x^2 + y^2)^2} + \frac{2}{x^2 + y^2} \][/tex]
Now, compute [tex]\( v_{yy} \)[/tex]:
[tex]\[ v_{yy} = \frac{\partial^2 v}{\partial y^2} = \frac{\partial}{\partial y} \left( \frac{2y}{x^2 + y^2} \right) \][/tex]
[tex]\[ \frac{\partial}{\partial y} \left( \frac{2y}{x^2 + y^2} \right) = \frac{(x^2 + y^2) \cdot 2 - 2y \cdot 2y}{(x^2 + y^2)^2} = \frac{2(x^2 + y^2) - 4y^2}{(x^2 + y^2)^2} = \frac{2x^2 + 2y^2 - 4y^2}{(x^2 + y^2)^2} = \frac{2x^2 - 2y^2}{(x^2 + y^2)^2} \][/tex]
Thus:
[tex]\[ v_{yy} = -\frac{4y^2}{(x^2 + y^2)^2} + \frac{2}{x^2 + y^2} \][/tex]
3. Check if [tex]\( v \)[/tex] is harmonic by summing the second partial derivatives:
[tex]\[ v_{xx} + v_{yy} = \left( -\frac{4x^2}{(x^2 + y^2)^2} + \frac{2}{x^2 + y^2} \right) + \left( -\frac{4y^2}{(x^2 + y^2)^2} + \frac{2}{x^2 + y^2} \right) \][/tex]
[tex]\[ v_{xx} + v_{yy} = -\frac{4x^2}{(x^2 + y^2)^2} - \frac{4y^2}{(x^2 + y^2)^2} + \frac{2}{x^2 + y^2} + \frac{2}{x^2 + y^2} \][/tex]
[tex]\[ = -\frac{4(x^2 + y^2)}{(x^2 + y^2)^2} + \frac{4}{x^2 + y^2} \][/tex]
[tex]\[ = -\frac{4}{x^2 + y^2} + \frac{4}{x^2 + y^2} = 0 \][/tex]
Since [tex]\( v_{xx} + v_{yy} = 0 \)[/tex], the function [tex]\( v \)[/tex] is indeed harmonic.
4. Find a function [tex]\( u \)[/tex] such that [tex]\( u + iv \)[/tex] is analytic.
According to the Cauchy-Riemann equations:
[tex]\[ u_x = -v_y \quad \text{and} \quad u_y = v_x \][/tex]
Given:
[tex]\[ v_y = \frac{2y}{x^2 + y^2} \Rightarrow u_x = -\frac{2y}{x^2 + y^2} \][/tex]
[tex]\[ v_x = \frac{2x}{x^2 + y^2} \Rightarrow u_y = \frac{2x}{x^2 + y^2} \][/tex]
Therefore, the function [tex]\( v = \log(x^2 + y^2) \)[/tex] is harmonic, and the function [tex]\( u \)[/tex] obtained by using the Cauchy-Riemann equations satisfies the conditions for [tex]\( u + iv \)[/tex] to be analytic.
1. Compute the first-order partial derivatives of [tex]\( v \)[/tex]:
[tex]\[ v_x = \frac{\partial v}{\partial x} = \frac{2x}{x^2 + y^2} \][/tex]
[tex]\[ v_y = \frac{\partial v}{\partial y} = \frac{2y}{x^2 + y^2} \][/tex]
2. Compute the second-order partial derivatives of [tex]\( v \)[/tex]:
[tex]\[ v_{xx} = \frac{\partial^2 v}{\partial x^2} = \frac{\partial}{\partial x} \left( \frac{2x}{x^2 + y^2} \right) \][/tex]
[tex]\[ \frac{\partial}{\partial x} \left( \frac{2x}{x^2 + y^2} \right) = \frac{(x^2 + y^2) \cdot 2 - 2x \cdot 2x}{(x^2 + y^2)^2} = \frac{2(x^2 + y^2) - 4x^2}{(x^2 + y^2)^2} = \frac{2x^2 + 2y^2 - 4x^2}{(x^2 + y^2)^2} = \frac{-2x^2 + 2y^2}{(x^2 + y^2)^2} \][/tex]
Thus:
[tex]\[ v_{xx} = -\frac{4x^2}{(x^2 + y^2)^2} + \frac{2}{x^2 + y^2} \][/tex]
Now, compute [tex]\( v_{yy} \)[/tex]:
[tex]\[ v_{yy} = \frac{\partial^2 v}{\partial y^2} = \frac{\partial}{\partial y} \left( \frac{2y}{x^2 + y^2} \right) \][/tex]
[tex]\[ \frac{\partial}{\partial y} \left( \frac{2y}{x^2 + y^2} \right) = \frac{(x^2 + y^2) \cdot 2 - 2y \cdot 2y}{(x^2 + y^2)^2} = \frac{2(x^2 + y^2) - 4y^2}{(x^2 + y^2)^2} = \frac{2x^2 + 2y^2 - 4y^2}{(x^2 + y^2)^2} = \frac{2x^2 - 2y^2}{(x^2 + y^2)^2} \][/tex]
Thus:
[tex]\[ v_{yy} = -\frac{4y^2}{(x^2 + y^2)^2} + \frac{2}{x^2 + y^2} \][/tex]
3. Check if [tex]\( v \)[/tex] is harmonic by summing the second partial derivatives:
[tex]\[ v_{xx} + v_{yy} = \left( -\frac{4x^2}{(x^2 + y^2)^2} + \frac{2}{x^2 + y^2} \right) + \left( -\frac{4y^2}{(x^2 + y^2)^2} + \frac{2}{x^2 + y^2} \right) \][/tex]
[tex]\[ v_{xx} + v_{yy} = -\frac{4x^2}{(x^2 + y^2)^2} - \frac{4y^2}{(x^2 + y^2)^2} + \frac{2}{x^2 + y^2} + \frac{2}{x^2 + y^2} \][/tex]
[tex]\[ = -\frac{4(x^2 + y^2)}{(x^2 + y^2)^2} + \frac{4}{x^2 + y^2} \][/tex]
[tex]\[ = -\frac{4}{x^2 + y^2} + \frac{4}{x^2 + y^2} = 0 \][/tex]
Since [tex]\( v_{xx} + v_{yy} = 0 \)[/tex], the function [tex]\( v \)[/tex] is indeed harmonic.
4. Find a function [tex]\( u \)[/tex] such that [tex]\( u + iv \)[/tex] is analytic.
According to the Cauchy-Riemann equations:
[tex]\[ u_x = -v_y \quad \text{and} \quad u_y = v_x \][/tex]
Given:
[tex]\[ v_y = \frac{2y}{x^2 + y^2} \Rightarrow u_x = -\frac{2y}{x^2 + y^2} \][/tex]
[tex]\[ v_x = \frac{2x}{x^2 + y^2} \Rightarrow u_y = \frac{2x}{x^2 + y^2} \][/tex]
Therefore, the function [tex]\( v = \log(x^2 + y^2) \)[/tex] is harmonic, and the function [tex]\( u \)[/tex] obtained by using the Cauchy-Riemann equations satisfies the conditions for [tex]\( u + iv \)[/tex] to be analytic.
We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Your questions are important to us at Westonci.ca. Visit again for expert answers and reliable information.