Welcome to Westonci.ca, where your questions are met with accurate answers from a community of experts and enthusiasts. Explore thousands of questions and answers from knowledgeable experts in various fields on our Q&A platform. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.
Sagot :
To find the length of the smallest side of a triangle with sides that are consecutive even integers and a perimeter of 54, let me guide you step-by-step through the solution:
1. Define the sides of the triangle:
Let's denote the consecutive even integers as [tex]\( x \)[/tex], [tex]\( x+2 \)[/tex], and [tex]\( x+4 \)[/tex].
2. Set up the equation for the perimeter:
The perimeter of a triangle is the sum of its three sides. So, we have the following equation for the perimeter:
[tex]\[ x + (x + 2) + (x + 4) = 54 \][/tex]
3. Combine like terms:
Simplify the equation by adding the [tex]\( x \)[/tex] terms together and the constant terms together:
[tex]\[ 3x + 6 = 54 \][/tex]
4. Isolate the variable [tex]\( x \)[/tex]:
To isolate [tex]\( x \)[/tex], first subtract 6 from both sides of the equation:
[tex]\[ 3x = 48 \][/tex]
5. Solve for [tex]\( x \)[/tex]:
Divide both sides by 3 to solve for [tex]\( x \)[/tex]:
[tex]\[ x = 16 \][/tex]
6. Identify the smallest side:
Since [tex]\( x \)[/tex] represents the smallest side of the triangle, and we've determined [tex]\( x = 16 \)[/tex], the smallest side is 16.
Therefore, the length of the smallest side of the triangle is:
(d) 16
1. Define the sides of the triangle:
Let's denote the consecutive even integers as [tex]\( x \)[/tex], [tex]\( x+2 \)[/tex], and [tex]\( x+4 \)[/tex].
2. Set up the equation for the perimeter:
The perimeter of a triangle is the sum of its three sides. So, we have the following equation for the perimeter:
[tex]\[ x + (x + 2) + (x + 4) = 54 \][/tex]
3. Combine like terms:
Simplify the equation by adding the [tex]\( x \)[/tex] terms together and the constant terms together:
[tex]\[ 3x + 6 = 54 \][/tex]
4. Isolate the variable [tex]\( x \)[/tex]:
To isolate [tex]\( x \)[/tex], first subtract 6 from both sides of the equation:
[tex]\[ 3x = 48 \][/tex]
5. Solve for [tex]\( x \)[/tex]:
Divide both sides by 3 to solve for [tex]\( x \)[/tex]:
[tex]\[ x = 16 \][/tex]
6. Identify the smallest side:
Since [tex]\( x \)[/tex] represents the smallest side of the triangle, and we've determined [tex]\( x = 16 \)[/tex], the smallest side is 16.
Therefore, the length of the smallest side of the triangle is:
(d) 16
Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Get the answers you need at Westonci.ca. Stay informed with our latest expert advice.