Get the answers you need at Westonci.ca, where our expert community is always ready to help with accurate information. Discover comprehensive solutions to your questions from a wide network of experts on our user-friendly platform. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
Let's solve the problem step by step.
### Determine if [tex]\( v(x, y) = \log(x^2 + y^2) \)[/tex] is Harmonic
To determine if [tex]\( v = \log(x^2 + y^2) \)[/tex] is harmonic, we need to compute the Laplacian of [tex]\( v \)[/tex]:
[tex]\[ \Delta v = \frac{\partial^2 v}{\partial x^2} + \frac{\partial^2 v}{\partial y^2} \][/tex]
First, we find the partial derivatives of [tex]\( v \)[/tex].
#### First Partial Derivatives:
[tex]\[ v = \log(x^2 + y^2) \][/tex]
[tex]\[ \frac{\partial v}{\partial x} = \frac{2x}{x^2 + y^2} \][/tex]
[tex]\[ \frac{\partial v}{\partial y} = \frac{2y}{x^2 + y^2} \][/tex]
#### Second Partial Derivatives:
[tex]\[ \frac{\partial^2 v}{\partial x^2} \][/tex]
[tex]\[ \frac{\partial}{\partial x} \left( \frac{2x}{x^2 + y^2} \right) \][/tex]
Using the quotient rule:
[tex]\[ \frac{\partial}{\partial x} \left( \frac{2x}{x^2 + y^2} \right) = \frac{(2(x^2 + y^2) - 2x \cdot 2x)}{(x^2 + y^2)^2} = \frac{2(x^2 + y^2 - 2x^2)}{(x^2 + y^2)^2} = \frac{2(y^2 - x^2)}{(x^2 + y^2)^2} \][/tex]
Similarly for [tex]\( \frac{\partial^2 v}{\partial y^2} \)[/tex]:
[tex]\[ \frac{\partial}{\partial y} \left( \frac{2y}{x^2 + y^2} \right) \][/tex]
Using the quotient rule:
[tex]\[ \frac{\partial}{\partial y} \left( \frac{2y}{x^2 + y^2} \right) = \frac{(2(x^2 + y^2) - 2y \cdot 2y)}{(x^2 + y^2)^2} = \frac{2(x^2 + y^2 - 2y^2)}{(x^2 + y^2)^2} = \frac{2(x^2 - y^2)}{(x^2 + y^2)^2} \][/tex]
Now, summing these up for the Laplacian:
[tex]\[ \Delta v = \frac{\partial^2 v}{\partial x^2} + \frac{\partial^2 v}{\partial y^2} = \frac{2(y^2 - x^2)}{(x^2 + y^2)^2} + \frac{2(x^2 - y^2)}{(x^2 + y^2)^2} = 0 \][/tex]
Since [tex]\( \Delta v = 0 \)[/tex], [tex]\( v(x, y) = \log(x^2 + y^2) \)[/tex] is harmonic.
### Finding a Function [tex]\( u \)[/tex] such that [tex]\( u + iv \)[/tex] is Analytic
We need to find [tex]\( u(x, y) \)[/tex] such that [tex]\( u + iv \)[/tex] is an analytic function. For this, the Cauchy-Riemann equations must be satisfied:
[tex]\[ \frac{\partial u}{\partial x} = \frac{\partial v}{\partial y} \][/tex]
[tex]\[ \frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x} \][/tex]
We already found:
[tex]\[ \frac{\partial v}{\partial x} = \frac{2x}{x^2 + y^2} \][/tex]
[tex]\[ \frac{\partial v}{\partial y} = \frac{2y}{x^2 + y^2} \][/tex]
Using the Cauchy-Riemann equations:
[tex]\[ \frac{\partial u}{\partial x} = \frac{2y}{x^2 + y^2} \][/tex]
[tex]\[ \frac{\partial u}{\partial y} = -\frac{2x}{x^2 + y^2} \][/tex]
We can integrate these equations to find [tex]\( u \)[/tex]:
To find [tex]\( u \)[/tex]:
[tex]\[ u = \int \frac{\partial u}{\partial x} \, dx \][/tex]
[tex]\[ u = \int \frac{2y}{x^2 + y^2} \, dx \][/tex]
Here, [tex]\( y \)[/tex] is treated as a constant:
[tex]\[ u = 2y \int \frac{1}{x^2 + y^2} \, dx \][/tex]
Recognizing the standard integral:
[tex]\[ \int \frac{1}{x^2 + a^2} \, dx = \frac{1}{a} \arctan \left( \frac{x}{a} \right) \][/tex]
Thus:
[tex]\[ u = 2y \cdot \frac{1}{y} \arctan \left( \frac{x}{y} \right) = 2 \arctan \left( \frac{x}{y} \right) \][/tex]
But we also need to integrate with respect to [tex]\( y \)[/tex]:
[tex]\[ \int -\frac{2x}{x^2 + y^2} \, dy \][/tex]
This is solved similarly:
[tex]\[ u = -2x \arctan \left( \frac{y}{x} \right) \][/tex]
Combining these, we arrive at the form:
[tex]\[ u - i \arctan \left( \frac{x}{y} \right) + i \arctan \left( \frac{y}{x} \right) \][/tex]
This leads to a logarithmic form:
[tex]\[ u + iv = i \log \left( \frac{x - iy}{x + iy}, \right) \][/tex]
Thus:
[tex]\[ u + iv = -I \log(x - iy) + I \log(x + iy) + I \log(-I x + y) - I \log(I x + y) \][/tex]
This is the analytic function combining [tex]\( u \)[/tex] and [tex]\( iv \)[/tex].
### Determine if [tex]\( v(x, y) = \log(x^2 + y^2) \)[/tex] is Harmonic
To determine if [tex]\( v = \log(x^2 + y^2) \)[/tex] is harmonic, we need to compute the Laplacian of [tex]\( v \)[/tex]:
[tex]\[ \Delta v = \frac{\partial^2 v}{\partial x^2} + \frac{\partial^2 v}{\partial y^2} \][/tex]
First, we find the partial derivatives of [tex]\( v \)[/tex].
#### First Partial Derivatives:
[tex]\[ v = \log(x^2 + y^2) \][/tex]
[tex]\[ \frac{\partial v}{\partial x} = \frac{2x}{x^2 + y^2} \][/tex]
[tex]\[ \frac{\partial v}{\partial y} = \frac{2y}{x^2 + y^2} \][/tex]
#### Second Partial Derivatives:
[tex]\[ \frac{\partial^2 v}{\partial x^2} \][/tex]
[tex]\[ \frac{\partial}{\partial x} \left( \frac{2x}{x^2 + y^2} \right) \][/tex]
Using the quotient rule:
[tex]\[ \frac{\partial}{\partial x} \left( \frac{2x}{x^2 + y^2} \right) = \frac{(2(x^2 + y^2) - 2x \cdot 2x)}{(x^2 + y^2)^2} = \frac{2(x^2 + y^2 - 2x^2)}{(x^2 + y^2)^2} = \frac{2(y^2 - x^2)}{(x^2 + y^2)^2} \][/tex]
Similarly for [tex]\( \frac{\partial^2 v}{\partial y^2} \)[/tex]:
[tex]\[ \frac{\partial}{\partial y} \left( \frac{2y}{x^2 + y^2} \right) \][/tex]
Using the quotient rule:
[tex]\[ \frac{\partial}{\partial y} \left( \frac{2y}{x^2 + y^2} \right) = \frac{(2(x^2 + y^2) - 2y \cdot 2y)}{(x^2 + y^2)^2} = \frac{2(x^2 + y^2 - 2y^2)}{(x^2 + y^2)^2} = \frac{2(x^2 - y^2)}{(x^2 + y^2)^2} \][/tex]
Now, summing these up for the Laplacian:
[tex]\[ \Delta v = \frac{\partial^2 v}{\partial x^2} + \frac{\partial^2 v}{\partial y^2} = \frac{2(y^2 - x^2)}{(x^2 + y^2)^2} + \frac{2(x^2 - y^2)}{(x^2 + y^2)^2} = 0 \][/tex]
Since [tex]\( \Delta v = 0 \)[/tex], [tex]\( v(x, y) = \log(x^2 + y^2) \)[/tex] is harmonic.
### Finding a Function [tex]\( u \)[/tex] such that [tex]\( u + iv \)[/tex] is Analytic
We need to find [tex]\( u(x, y) \)[/tex] such that [tex]\( u + iv \)[/tex] is an analytic function. For this, the Cauchy-Riemann equations must be satisfied:
[tex]\[ \frac{\partial u}{\partial x} = \frac{\partial v}{\partial y} \][/tex]
[tex]\[ \frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x} \][/tex]
We already found:
[tex]\[ \frac{\partial v}{\partial x} = \frac{2x}{x^2 + y^2} \][/tex]
[tex]\[ \frac{\partial v}{\partial y} = \frac{2y}{x^2 + y^2} \][/tex]
Using the Cauchy-Riemann equations:
[tex]\[ \frac{\partial u}{\partial x} = \frac{2y}{x^2 + y^2} \][/tex]
[tex]\[ \frac{\partial u}{\partial y} = -\frac{2x}{x^2 + y^2} \][/tex]
We can integrate these equations to find [tex]\( u \)[/tex]:
To find [tex]\( u \)[/tex]:
[tex]\[ u = \int \frac{\partial u}{\partial x} \, dx \][/tex]
[tex]\[ u = \int \frac{2y}{x^2 + y^2} \, dx \][/tex]
Here, [tex]\( y \)[/tex] is treated as a constant:
[tex]\[ u = 2y \int \frac{1}{x^2 + y^2} \, dx \][/tex]
Recognizing the standard integral:
[tex]\[ \int \frac{1}{x^2 + a^2} \, dx = \frac{1}{a} \arctan \left( \frac{x}{a} \right) \][/tex]
Thus:
[tex]\[ u = 2y \cdot \frac{1}{y} \arctan \left( \frac{x}{y} \right) = 2 \arctan \left( \frac{x}{y} \right) \][/tex]
But we also need to integrate with respect to [tex]\( y \)[/tex]:
[tex]\[ \int -\frac{2x}{x^2 + y^2} \, dy \][/tex]
This is solved similarly:
[tex]\[ u = -2x \arctan \left( \frac{y}{x} \right) \][/tex]
Combining these, we arrive at the form:
[tex]\[ u - i \arctan \left( \frac{x}{y} \right) + i \arctan \left( \frac{y}{x} \right) \][/tex]
This leads to a logarithmic form:
[tex]\[ u + iv = i \log \left( \frac{x - iy}{x + iy}, \right) \][/tex]
Thus:
[tex]\[ u + iv = -I \log(x - iy) + I \log(x + iy) + I \log(-I x + y) - I \log(I x + y) \][/tex]
This is the analytic function combining [tex]\( u \)[/tex] and [tex]\( iv \)[/tex].
Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Thank you for choosing Westonci.ca as your information source. We look forward to your next visit.