At Westonci.ca, we connect you with the best answers from a community of experienced and knowledgeable individuals. Experience the ease of finding quick and accurate answers to your questions from professionals on our platform. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.
Sagot :
To determine which radioactive substance Juliet is measuring, we need to calculate the half-life of the substance based on the information provided.
Juliet started with [tex]\(200 \, \text{g}\)[/tex] of the substance in 1997. We can use the measured amounts in subsequent years to calculate the half-life.
In 2002 (5 years later), she had [tex]\(100 \, \text{g}\)[/tex] of the substance left. This suggests that the substance halved in 5 years.
[tex]\[ \text{Initial amount} = 200 \, \text{g} \][/tex]
[tex]\[ \text{Amount left in 5 years} = 100 \, \text{g} \][/tex]
Using the half-life formula:
[tex]\[ \text{Amount remaining} = \text{Initial amount} \times \left(\frac{1}{2}\right)^{\frac{\text{time elapsed}}{\text{half-life}}} \][/tex]
Given:
[tex]\[ 100 = 200 \times \left(\frac{1}{2}\right)^{\frac{5 \text{ years}}{\text{half-life}}} \][/tex]
To solve for the half-life:
[tex]\[ \frac{100}{200} = \left(\frac{1}{2}\right)^{\frac{5 \text{ years}}{\text{half-life}}} \][/tex]
[tex]\[ \frac{1}{2} = \left(\frac{1}{2}\right)^{\frac{5 \text{ years}}{\text{half-life}}} \][/tex]
This equation confirms that:
[tex]\[ \left(\frac{1}{2}\right) = \left(\frac{1}{2}\right)^{\frac{5 \text{ years}}{\text{half-life}}} \][/tex]
This simply means:
[tex]\[ \frac{5 \text{ years}}{\text{half-life}} = 1 \][/tex]
Thus:
[tex]\[ \text{half-life} = 5 \text{ years} \][/tex]
We can verify this calculation with the measurement from 2007 (10 years later from 1997), where [tex]\(50 \, \text{g}\)[/tex] of the substance remained:
[tex]\[ \text{Initial amount} = 200 \, \text{g} \][/tex]
[tex]\[ \text{Amount left in 10 years} = 50 \, \text{g} \][/tex]
Using the half-life formula again:
[tex]\[ 50 = 200 \times \left(\frac{1}{2}\right)^{\frac{10 \text{ years}}{\text{half-life}}} \][/tex]
Given:
[tex]\[ \frac{50}{200} = \left(\frac{1}{2}\right)^{\frac{10 \text{ years}}{\text{half-life}}} \][/tex]
[tex]\[ \frac{1}{4} = \left(\frac{1}{2}\right)^{2} \][/tex]
Since:
[tex]\[ \left(\frac{1}{2}\right)^{2} = \frac{1}{2 \times 2} = \frac{1}{4} \][/tex]
This confirms that:
[tex]\[ \text{half-life} = 5 \text{ years} \][/tex]
Comparing this calculated half-life with the given half-lives of various isotopes:
- Rubidium-91: 58.4 seconds
- Iodine-131: 8 days
- Cobalt-60: 5 years
- Carbon-14: 5730 years
- Cesium-135: [tex]\(2.3 \times 10^6\)[/tex] years
The half-life that matches our calculated half-life of 5 years is that of Cobalt-60.
Therefore, the substance Juliet is most likely measuring is Cobalt-60.
Juliet started with [tex]\(200 \, \text{g}\)[/tex] of the substance in 1997. We can use the measured amounts in subsequent years to calculate the half-life.
In 2002 (5 years later), she had [tex]\(100 \, \text{g}\)[/tex] of the substance left. This suggests that the substance halved in 5 years.
[tex]\[ \text{Initial amount} = 200 \, \text{g} \][/tex]
[tex]\[ \text{Amount left in 5 years} = 100 \, \text{g} \][/tex]
Using the half-life formula:
[tex]\[ \text{Amount remaining} = \text{Initial amount} \times \left(\frac{1}{2}\right)^{\frac{\text{time elapsed}}{\text{half-life}}} \][/tex]
Given:
[tex]\[ 100 = 200 \times \left(\frac{1}{2}\right)^{\frac{5 \text{ years}}{\text{half-life}}} \][/tex]
To solve for the half-life:
[tex]\[ \frac{100}{200} = \left(\frac{1}{2}\right)^{\frac{5 \text{ years}}{\text{half-life}}} \][/tex]
[tex]\[ \frac{1}{2} = \left(\frac{1}{2}\right)^{\frac{5 \text{ years}}{\text{half-life}}} \][/tex]
This equation confirms that:
[tex]\[ \left(\frac{1}{2}\right) = \left(\frac{1}{2}\right)^{\frac{5 \text{ years}}{\text{half-life}}} \][/tex]
This simply means:
[tex]\[ \frac{5 \text{ years}}{\text{half-life}} = 1 \][/tex]
Thus:
[tex]\[ \text{half-life} = 5 \text{ years} \][/tex]
We can verify this calculation with the measurement from 2007 (10 years later from 1997), where [tex]\(50 \, \text{g}\)[/tex] of the substance remained:
[tex]\[ \text{Initial amount} = 200 \, \text{g} \][/tex]
[tex]\[ \text{Amount left in 10 years} = 50 \, \text{g} \][/tex]
Using the half-life formula again:
[tex]\[ 50 = 200 \times \left(\frac{1}{2}\right)^{\frac{10 \text{ years}}{\text{half-life}}} \][/tex]
Given:
[tex]\[ \frac{50}{200} = \left(\frac{1}{2}\right)^{\frac{10 \text{ years}}{\text{half-life}}} \][/tex]
[tex]\[ \frac{1}{4} = \left(\frac{1}{2}\right)^{2} \][/tex]
Since:
[tex]\[ \left(\frac{1}{2}\right)^{2} = \frac{1}{2 \times 2} = \frac{1}{4} \][/tex]
This confirms that:
[tex]\[ \text{half-life} = 5 \text{ years} \][/tex]
Comparing this calculated half-life with the given half-lives of various isotopes:
- Rubidium-91: 58.4 seconds
- Iodine-131: 8 days
- Cobalt-60: 5 years
- Carbon-14: 5730 years
- Cesium-135: [tex]\(2.3 \times 10^6\)[/tex] years
The half-life that matches our calculated half-life of 5 years is that of Cobalt-60.
Therefore, the substance Juliet is most likely measuring is Cobalt-60.
Thanks for using our service. We aim to provide the most accurate answers for all your queries. Visit us again for more insights. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Thank you for trusting Westonci.ca. Don't forget to revisit us for more accurate and insightful answers.