Discover a wealth of knowledge at Westonci.ca, where experts provide answers to your most pressing questions. Experience the ease of finding quick and accurate answers to your questions from professionals on our platform. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.

Open Response: The points in the table lie on a line. Compute the slope of the line.

\begin{tabular}{|c|r|}
\hline
[tex]$x$[/tex] & [tex]$y$[/tex] \\
\hline
6 & -3 \\
\hline
-2 & 1 \\
\hline
-4 & 2 \\
\hline
\end{tabular}


Sagot :

To find the slope of the line that passes through the given points [tex]\((6, -3)\)[/tex], [tex]\((-2, 1)\)[/tex], and [tex]\((-4, 2)\)[/tex], we will use the slope formula:

[tex]\[ \text{slope} = \frac{y_2 - y_1}{x_2 - x_1} \][/tex]

where [tex]\((x_1, y_1)\)[/tex] and [tex]\((x_2, y_2)\)[/tex] are any two points on the line.

Let's choose the points [tex]\((6, -3)\)[/tex] and [tex]\((-2, 1)\)[/tex]. Applying these points to the slope formula, we get:

[tex]\[ \text{slope} = \frac{1 - (-3)}{-2 - 6} \][/tex]

First, simplify the numerator:

[tex]\[ 1 - (-3) = 1 + 3 = 4 \][/tex]

Next, simplify the denominator:

[tex]\[ -2 - 6 = -8 \][/tex]

Now, substitute these simplified values back into the slope equation:

[tex]\[ \text{slope} = \frac{4}{-8} \][/tex]

Simplify the fraction:

[tex]\[ \text{slope} = \frac{4}{-8} = -0.5 \][/tex]

Thus, the slope of the line passing through the given points is [tex]\(-0.5\)[/tex].
Visit us again for up-to-date and reliable answers. We're always ready to assist you with your informational needs. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Find reliable answers at Westonci.ca. Visit us again for the latest updates and expert advice.