At Westonci.ca, we make it easy for you to get the answers you need from a community of knowledgeable individuals. Get quick and reliable solutions to your questions from knowledgeable professionals on our comprehensive Q&A platform. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
To determine the expression for the equilibrium constant ([tex]\( K_{eq} \)[/tex]) for the given reaction, we follow these steps:
1. Write the balanced chemical equation:
[tex]\[ \mathrm{C_2H_4O_2(g) + 2H_2(g) \rightleftharpoons C_2H_6O(g) + H_2O(g)} \][/tex]
2. Understand the equilibrium constant expression:
The equilibrium constant ([tex]\( K_{eq} \)[/tex]) for a reaction is given in terms of the concentrations (or partial pressures for gases) of the reactants and products at equilibrium. For a general reaction:
[tex]\[ aA + bB \rightleftharpoons cC + dD \][/tex]
The equilibrium constant expression is:
[tex]\[ K_{eq} = \frac{[C]^c[D]^d}{[A]^a[B]^b} \][/tex]
where [tex]\([X]\)[/tex] denotes the concentration or partial pressure of the species [tex]\(X\)[/tex].
3. Apply the general form to the given reaction:
For the reaction:
[tex]\[ \mathrm{C_2H_4O_2(g) + 2H_2(g) \rightleftharpoons C_2H_6O(g) + H_2O(g)} \][/tex]
The equilibrium constant expression would be:
[tex]\[ K_{eq} = \frac{[\mathrm{C_2H_6O}][\mathrm{H_2O}]}{[\mathrm{C_2H_4O_2}][\mathrm{H_2}]^2} \][/tex]
### Conclusion:
The equilibrium constant expression for the given equation is:
[tex]\[ K_{eq} = \frac{[\mathrm{C_2H_6O}][\mathrm{H_2O}]}{[\mathrm{C_2H_4O_2}][\mathrm{H_2}]^2} \][/tex]
1. Write the balanced chemical equation:
[tex]\[ \mathrm{C_2H_4O_2(g) + 2H_2(g) \rightleftharpoons C_2H_6O(g) + H_2O(g)} \][/tex]
2. Understand the equilibrium constant expression:
The equilibrium constant ([tex]\( K_{eq} \)[/tex]) for a reaction is given in terms of the concentrations (or partial pressures for gases) of the reactants and products at equilibrium. For a general reaction:
[tex]\[ aA + bB \rightleftharpoons cC + dD \][/tex]
The equilibrium constant expression is:
[tex]\[ K_{eq} = \frac{[C]^c[D]^d}{[A]^a[B]^b} \][/tex]
where [tex]\([X]\)[/tex] denotes the concentration or partial pressure of the species [tex]\(X\)[/tex].
3. Apply the general form to the given reaction:
For the reaction:
[tex]\[ \mathrm{C_2H_4O_2(g) + 2H_2(g) \rightleftharpoons C_2H_6O(g) + H_2O(g)} \][/tex]
The equilibrium constant expression would be:
[tex]\[ K_{eq} = \frac{[\mathrm{C_2H_6O}][\mathrm{H_2O}]}{[\mathrm{C_2H_4O_2}][\mathrm{H_2}]^2} \][/tex]
### Conclusion:
The equilibrium constant expression for the given equation is:
[tex]\[ K_{eq} = \frac{[\mathrm{C_2H_6O}][\mathrm{H_2O}]}{[\mathrm{C_2H_4O_2}][\mathrm{H_2}]^2} \][/tex]
Thank you for trusting us with your questions. We're here to help you find accurate answers quickly and efficiently. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Thank you for using Westonci.ca. Come back for more in-depth answers to all your queries.