Welcome to Westonci.ca, where your questions are met with accurate answers from a community of experts and enthusiasts. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
To determine the radius of the circle given by the equation [tex]\( x^2 + y^2 = 64 \)[/tex], follow these steps:
1. Identify the general form of the equation of a circle:
The standard form of a circle's equation is [tex]\( (x - h)^2 + (y - k)^2 = r^2 \)[/tex], where [tex]\((h, k)\)[/tex] is the center and [tex]\(r\)[/tex] is the radius.
2. Compare the given equation with the standard form:
The given equation is [tex]\( x^2 + y^2 = 64 \)[/tex]. By comparing it with the standard form, you can see that:
- The center [tex]\((h, k)\)[/tex] is [tex]\((0, 0)\)[/tex] because there are no terms offsetting [tex]\( x \)[/tex] or [tex]\( y \)[/tex] (i.e., [tex]\( x \)[/tex] and [tex]\( y \)[/tex] are not shifted by any amount).
- The right side of the equation [tex]\( 64 \)[/tex] represents [tex]\( r^2 \)[/tex].
3. Calculate the radius [tex]\( r \)[/tex]:
- The equation given is in the form [tex]\( r^2 = 64 \)[/tex].
- To find the radius [tex]\( r \)[/tex], take the square root of both sides of the equation:
[tex]\[ r = \sqrt{64} \][/tex]
4. Find the numerical value:
- The square root of 64 is 8.
5. Conclusion:
Therefore, the radius of the circle [tex]\( x^2 + y^2 = 64 \)[/tex] is [tex]\( \boxed{8.0} \)[/tex].
1. Identify the general form of the equation of a circle:
The standard form of a circle's equation is [tex]\( (x - h)^2 + (y - k)^2 = r^2 \)[/tex], where [tex]\((h, k)\)[/tex] is the center and [tex]\(r\)[/tex] is the radius.
2. Compare the given equation with the standard form:
The given equation is [tex]\( x^2 + y^2 = 64 \)[/tex]. By comparing it with the standard form, you can see that:
- The center [tex]\((h, k)\)[/tex] is [tex]\((0, 0)\)[/tex] because there are no terms offsetting [tex]\( x \)[/tex] or [tex]\( y \)[/tex] (i.e., [tex]\( x \)[/tex] and [tex]\( y \)[/tex] are not shifted by any amount).
- The right side of the equation [tex]\( 64 \)[/tex] represents [tex]\( r^2 \)[/tex].
3. Calculate the radius [tex]\( r \)[/tex]:
- The equation given is in the form [tex]\( r^2 = 64 \)[/tex].
- To find the radius [tex]\( r \)[/tex], take the square root of both sides of the equation:
[tex]\[ r = \sqrt{64} \][/tex]
4. Find the numerical value:
- The square root of 64 is 8.
5. Conclusion:
Therefore, the radius of the circle [tex]\( x^2 + y^2 = 64 \)[/tex] is [tex]\( \boxed{8.0} \)[/tex].
We hope our answers were helpful. Return anytime for more information and answers to any other questions you may have. Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Thank you for choosing Westonci.ca as your information source. We look forward to your next visit.