Looking for trustworthy answers? Westonci.ca is the ultimate Q&A platform where experts share their knowledge on various topics. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.

3. If a circle is centered at [tex](5, -7)[/tex] and goes through the point [tex](10, 5)[/tex], what is the radius?

Sagot :

Sure! To determine the radius of a circle centered at [tex]\((5, -7)\)[/tex] that passes through the point [tex]\((10, 5)\)[/tex], you can use the distance formula. The distance formula is applied to find the distance between two points [tex]\((x_1, y_1)\)[/tex] and [tex]\((x_2, y_2)\)[/tex] in a Cartesian plane, and it is given by:

[tex]\[ d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} \][/tex]

Here:
- The center of the circle [tex]\((x_1, y_1)\)[/tex] is [tex]\((5, -7)\)[/tex].
- The point on the circle [tex]\((x_2, y_2)\)[/tex] is [tex]\((10, 5)\)[/tex].

Plugging these coordinates into the distance formula, we get:

[tex]\[ d = \sqrt{(10 - 5)^2 + (5 + 7)^2} \][/tex]

Simplifying inside the parentheses first:

[tex]\[ d = \sqrt{(5)^2 + (12)^2} \][/tex]

Then, squaring the numbers inside the square root:

[tex]\[ d = \sqrt{25 + 144} \][/tex]

Next, adding the results from within the square root:

[tex]\[ d = \sqrt{169} \][/tex]

Finally, taking the square root of 169:

[tex]\[ d = 13 \][/tex]

So, the radius of the circle is [tex]\(\boxed{13}\)[/tex].