Get the answers you need at Westonci.ca, where our expert community is dedicated to providing you with accurate information. Discover detailed solutions to your questions from a wide network of experts on our comprehensive Q&A platform. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.
Sagot :
To calculate the amount of heat generated for each cylinder height, we need to consider the mass of water ([tex]\(m_w\)[/tex]), the mass of the cylinder ([tex]\(m_c\)[/tex]), and the specific heat capacities of water and the cylinder material. Additionally, we need to use the temperature changes ([tex]\(\Delta T\)[/tex]) provided in the table.
The formula for calculating the heat generated ([tex]\(\Delta H\)[/tex]) when there is a temperature change is:
[tex]\[ \Delta H = m \cdot c \cdot \Delta T \][/tex]
where [tex]\(m\)[/tex] is the mass, [tex]\(c\)[/tex] is the specific heat capacity, and [tex]\(\Delta T\)[/tex] is the change in temperature.
Given:
- Mass of water: [tex]\(m_w = 1.0 \, \text{kg}\)[/tex]
- Mass of the cylinder: [tex]\(m_c = 5.0 \, \text{kg}\)[/tex]
- Specific heat capacity of water: [tex]\(c_w = 4.18 \, \text{kJ/(kg} \cdot \text{°C)}\)[/tex]
- Specific heat capacity of the cylinder: [tex]\(c_c = 0.9 \, \text{kJ/(kg} \cdot \text{°C)}\)[/tex]
The temperature changes ([tex]\(\Delta T\)[/tex]) for different heights are provided in the table:
- [tex]\(\Delta T\)[/tex] for 100 m: [tex]\(1.17 \, \text{°C}\)[/tex]
- [tex]\(\Delta T\)[/tex] for 200 m: [tex]\(2.34 \, \text{°C}\)[/tex]
- [tex]\(\Delta T\)[/tex] for 500 m: [tex]\(5.86 \, \text{°C}\)[/tex]
- [tex]\(\Delta T\)[/tex] for 1000 m: [tex]\(11.72 \, \text{°C}\)[/tex]
Let's calculate the heat generated for each height:
1. For 100 meters:
[tex]\[ \Delta H_{100} = m_w \cdot c_w \cdot \Delta T_{100} + m_c \cdot c_c \cdot \Delta T_{100} \][/tex]
[tex]\[ \Delta H_{100} = 1.0 \, \text{kg} \cdot 4.18 \, \text{kJ/(kg} \cdot \text{°C)} \cdot 1.17 \, \text{°C} + 5.0 \, \text{kg} \cdot 0.9 \, \text{kJ/(kg} \cdot \text{°C)} \cdot 1.17 \, \text{°C} \][/tex]
[tex]\[ \Delta H_{100} = 4.8906 \, \text{kJ} + 5.265 \, \text{kJ} = 10.2 \, \text{kJ} \ (\text{rounded}) \][/tex]
2. For 200 meters:
[tex]\[ \Delta H_{200} = m_w \cdot c_w \cdot \Delta T_{200} + m_c \cdot c_c \cdot \Delta T_{200} \][/tex]
[tex]\[ \Delta H_{200} = 1.0 \, \text{kg} \cdot 4.18 \, \text{kJ/(kg} \cdot \text{°C)} \cdot 2.34 \, \text{°C} + 5.0 \, \text{kg} \cdot 0.9 \, \text{kJ/(kg} \cdot \text{°C)} \cdot 2.34 \, \text{°C} \][/tex]
[tex]\[ \Delta H_{200} = 9.7812 \, \text{kJ} + 10.53 \, \text{kJ} = 20.3 \, \text{kJ} \ (\text{rounded}) \][/tex]
3. For 500 meters:
[tex]\[ \Delta H_{500} = m_w \cdot c_w \cdot \Delta T_{500} + m_c \cdot c_c \cdot \Delta T_{500} \][/tex]
[tex]\[ \Delta H_{500} = 1.0 \, \text{kg} \cdot 4.18 \, \text{kJ/(kg} \cdot \text{°C)} \cdot 5.86 \, \text{°C} + 5.0 \, \text{kg} \cdot 0.9 \, \text{kJ/(kg} \cdot \text{°C)} \cdot 5.86 \, \text{°C} \][/tex]
[tex]\[ \Delta H_{500} = 24.5148 \, \text{kJ} + 26.37 \, \text{kJ} = 50.9 \, \text{kJ} \ (\text{rounded}) \][/tex]
4. For 1000 meters:
[tex]\[ \Delta H_{1000} = m_w \cdot c_w \cdot \Delta T_{1000} + m_c \cdot c_c \cdot \Delta T_{1000} \][/tex]
[tex]\[ \Delta H_{1000} = 1.0 \, \text{kg} \cdot 4.18 \, \text{kJ/(kg} \cdot \text{°C)} \cdot 11.72 \, \text{°C} + 5.0 \, \text{kg} \cdot 0.9 \, \text{kJ/(kg} \cdot \text{°C)} \cdot 11.72 \, \text{°C} \][/tex]
[tex]\[ \Delta H_{1000} = 48.9896 \, \text{kJ} + 52.74 \, \text{kJ} = 101.7 \, \text{kJ} \ (\text{rounded}) \][/tex]
Final answers:
- For 100 meters: [tex]\(10.2 \, \text{kJ}\)[/tex]
- For 200 meters: [tex]\(20.3 \, \text{kJ}\)[/tex]
- For 500 meters: [tex]\(50.9 \, \text{kJ}\)[/tex]
- For 1000 meters: [tex]\(101.7 \, \text{kJ}\)[/tex]
Therefore, the amount of heat generated for each height is as follows:
[tex]\[ \begin{array}{l} 100 \, \text{m}: 10.2 \, \text{kJ} \\ 200 \, \text{m}: 20.3 \, \text{kJ} \\ 500 \, \text{m}: 50.9 \, \text{kJ} \\ 1000 \, \text{m}: 101.7 \, \text{kJ} \end{array} \][/tex]
The formula for calculating the heat generated ([tex]\(\Delta H\)[/tex]) when there is a temperature change is:
[tex]\[ \Delta H = m \cdot c \cdot \Delta T \][/tex]
where [tex]\(m\)[/tex] is the mass, [tex]\(c\)[/tex] is the specific heat capacity, and [tex]\(\Delta T\)[/tex] is the change in temperature.
Given:
- Mass of water: [tex]\(m_w = 1.0 \, \text{kg}\)[/tex]
- Mass of the cylinder: [tex]\(m_c = 5.0 \, \text{kg}\)[/tex]
- Specific heat capacity of water: [tex]\(c_w = 4.18 \, \text{kJ/(kg} \cdot \text{°C)}\)[/tex]
- Specific heat capacity of the cylinder: [tex]\(c_c = 0.9 \, \text{kJ/(kg} \cdot \text{°C)}\)[/tex]
The temperature changes ([tex]\(\Delta T\)[/tex]) for different heights are provided in the table:
- [tex]\(\Delta T\)[/tex] for 100 m: [tex]\(1.17 \, \text{°C}\)[/tex]
- [tex]\(\Delta T\)[/tex] for 200 m: [tex]\(2.34 \, \text{°C}\)[/tex]
- [tex]\(\Delta T\)[/tex] for 500 m: [tex]\(5.86 \, \text{°C}\)[/tex]
- [tex]\(\Delta T\)[/tex] for 1000 m: [tex]\(11.72 \, \text{°C}\)[/tex]
Let's calculate the heat generated for each height:
1. For 100 meters:
[tex]\[ \Delta H_{100} = m_w \cdot c_w \cdot \Delta T_{100} + m_c \cdot c_c \cdot \Delta T_{100} \][/tex]
[tex]\[ \Delta H_{100} = 1.0 \, \text{kg} \cdot 4.18 \, \text{kJ/(kg} \cdot \text{°C)} \cdot 1.17 \, \text{°C} + 5.0 \, \text{kg} \cdot 0.9 \, \text{kJ/(kg} \cdot \text{°C)} \cdot 1.17 \, \text{°C} \][/tex]
[tex]\[ \Delta H_{100} = 4.8906 \, \text{kJ} + 5.265 \, \text{kJ} = 10.2 \, \text{kJ} \ (\text{rounded}) \][/tex]
2. For 200 meters:
[tex]\[ \Delta H_{200} = m_w \cdot c_w \cdot \Delta T_{200} + m_c \cdot c_c \cdot \Delta T_{200} \][/tex]
[tex]\[ \Delta H_{200} = 1.0 \, \text{kg} \cdot 4.18 \, \text{kJ/(kg} \cdot \text{°C)} \cdot 2.34 \, \text{°C} + 5.0 \, \text{kg} \cdot 0.9 \, \text{kJ/(kg} \cdot \text{°C)} \cdot 2.34 \, \text{°C} \][/tex]
[tex]\[ \Delta H_{200} = 9.7812 \, \text{kJ} + 10.53 \, \text{kJ} = 20.3 \, \text{kJ} \ (\text{rounded}) \][/tex]
3. For 500 meters:
[tex]\[ \Delta H_{500} = m_w \cdot c_w \cdot \Delta T_{500} + m_c \cdot c_c \cdot \Delta T_{500} \][/tex]
[tex]\[ \Delta H_{500} = 1.0 \, \text{kg} \cdot 4.18 \, \text{kJ/(kg} \cdot \text{°C)} \cdot 5.86 \, \text{°C} + 5.0 \, \text{kg} \cdot 0.9 \, \text{kJ/(kg} \cdot \text{°C)} \cdot 5.86 \, \text{°C} \][/tex]
[tex]\[ \Delta H_{500} = 24.5148 \, \text{kJ} + 26.37 \, \text{kJ} = 50.9 \, \text{kJ} \ (\text{rounded}) \][/tex]
4. For 1000 meters:
[tex]\[ \Delta H_{1000} = m_w \cdot c_w \cdot \Delta T_{1000} + m_c \cdot c_c \cdot \Delta T_{1000} \][/tex]
[tex]\[ \Delta H_{1000} = 1.0 \, \text{kg} \cdot 4.18 \, \text{kJ/(kg} \cdot \text{°C)} \cdot 11.72 \, \text{°C} + 5.0 \, \text{kg} \cdot 0.9 \, \text{kJ/(kg} \cdot \text{°C)} \cdot 11.72 \, \text{°C} \][/tex]
[tex]\[ \Delta H_{1000} = 48.9896 \, \text{kJ} + 52.74 \, \text{kJ} = 101.7 \, \text{kJ} \ (\text{rounded}) \][/tex]
Final answers:
- For 100 meters: [tex]\(10.2 \, \text{kJ}\)[/tex]
- For 200 meters: [tex]\(20.3 \, \text{kJ}\)[/tex]
- For 500 meters: [tex]\(50.9 \, \text{kJ}\)[/tex]
- For 1000 meters: [tex]\(101.7 \, \text{kJ}\)[/tex]
Therefore, the amount of heat generated for each height is as follows:
[tex]\[ \begin{array}{l} 100 \, \text{m}: 10.2 \, \text{kJ} \\ 200 \, \text{m}: 20.3 \, \text{kJ} \\ 500 \, \text{m}: 50.9 \, \text{kJ} \\ 1000 \, \text{m}: 101.7 \, \text{kJ} \end{array} \][/tex]
Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Westonci.ca is your go-to source for reliable answers. Return soon for more expert insights.