Westonci.ca offers quick and accurate answers to your questions. Join our community and get the insights you need today. Explore a wealth of knowledge from professionals across various disciplines on our comprehensive Q&A platform. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
Certainly! Let's look at the quadratic equation used to model the height [tex]\( y \)[/tex] of a projectile over time [tex]\( x \)[/tex]:
[tex]\[ y = ax^2 + bx + c \][/tex]
In this equation:
- [tex]\( a \)[/tex] represents the coefficient related to the acceleration due to gravity divided by 2 (usually a negative number because gravity is pulling the projectile downwards).
- [tex]\( b \)[/tex] represents the initial velocity of the projectile.
- [tex]\( c \)[/tex] is the constant term.
To understand what the constant term [tex]\( c \)[/tex] represents, we can examine the equation at time [tex]\( x = 0 \)[/tex].
When [tex]\( x = 0 \)[/tex]:
[tex]\[ y = a(0)^2 + b(0) + c \][/tex]
[tex]\[ y = 0 + 0 + c \][/tex]
[tex]\[ y = c \][/tex]
This shows that when [tex]\( x = 0 \)[/tex], the height [tex]\( y \)[/tex] of the projectile is equal to [tex]\( c \)[/tex]. This means that [tex]\( c \)[/tex] is the initial height of the projectile when it has just been launched (i.e., before it has started moving due to its initial velocity or the influence of gravity).
So, the constant term [tex]\( c \)[/tex] in the quadratic equation [tex]\( y = ax^2 + bx + c \)[/tex] represents the initial height of the projectile.
Therefore, the correct interpretation of the constant term is:
- the initial height of the projectile.
[tex]\[ y = ax^2 + bx + c \][/tex]
In this equation:
- [tex]\( a \)[/tex] represents the coefficient related to the acceleration due to gravity divided by 2 (usually a negative number because gravity is pulling the projectile downwards).
- [tex]\( b \)[/tex] represents the initial velocity of the projectile.
- [tex]\( c \)[/tex] is the constant term.
To understand what the constant term [tex]\( c \)[/tex] represents, we can examine the equation at time [tex]\( x = 0 \)[/tex].
When [tex]\( x = 0 \)[/tex]:
[tex]\[ y = a(0)^2 + b(0) + c \][/tex]
[tex]\[ y = 0 + 0 + c \][/tex]
[tex]\[ y = c \][/tex]
This shows that when [tex]\( x = 0 \)[/tex], the height [tex]\( y \)[/tex] of the projectile is equal to [tex]\( c \)[/tex]. This means that [tex]\( c \)[/tex] is the initial height of the projectile when it has just been launched (i.e., before it has started moving due to its initial velocity or the influence of gravity).
So, the constant term [tex]\( c \)[/tex] in the quadratic equation [tex]\( y = ax^2 + bx + c \)[/tex] represents the initial height of the projectile.
Therefore, the correct interpretation of the constant term is:
- the initial height of the projectile.
Thank you for your visit. We are dedicated to helping you find the information you need, whenever you need it. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Westonci.ca is your trusted source for answers. Visit us again to find more information on diverse topics.