Welcome to Westonci.ca, where you can find answers to all your questions from a community of experienced professionals. Discover precise answers to your questions from a wide range of experts on our user-friendly Q&A platform. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
To model the situation of the softball being pitched, we need to form a quadratic equation that describes its height [tex]\( h(t) \)[/tex] at any time [tex]\( t \)[/tex]. The general form of the quadratic equation for the height in projectile motion is given by:
[tex]\[ h(t) = a t^2 + v t + h_0 \][/tex]
Here, [tex]\( a \)[/tex] represents the acceleration due to gravity, [tex]\( v \)[/tex] represents the initial velocity, and [tex]\( h_0 \)[/tex] represents the initial height.
Given the information:
- The initial velocity [tex]\( v \)[/tex] is 50 feet per second.
- The acceleration due to gravity [tex]\( a \)[/tex] is [tex]\( -16 \)[/tex] feet per second squared.
- The initial height [tex]\( h_0 \)[/tex] is 3 feet.
Let's translate these values into the quadratic equation format:
1. The acceleration [tex]\( a \)[/tex] is [tex]\( -16 \)[/tex], which will be multiplied by [tex]\( t^2 \)[/tex].
2. The initial velocity [tex]\( v \)[/tex] is [tex]\( 50 \)[/tex], which will be multiplied by [tex]\( t \)[/tex].
3. The initial height [tex]\( h_0 \)[/tex] is [tex]\( 3 \)[/tex], which will be added as a constant term.
So, plugging the given values into the equation [tex]\( h(t) = a t^2 + v t + h_0 \)[/tex], we get:
[tex]\[ h(t) = -16 t^2 + 50 t + 3 \][/tex]
Now let's examine the different options given in the problem:
1. [tex]\( h(t) = 50 t^2 - 16 t + 3 \)[/tex]
2. [tex]\( h(t) = -16 t^2 + 50 t + 3 \)[/tex]
3. [tex]\( 3 = -16 t^2 + 50 t + h_0 \)[/tex]
4. [tex]\( 3 = 50 t^2 - 16 t + h_0 \)[/tex]
Analyzing these:
- The first option is incorrect because it has the coefficients [tex]\( 50 \)[/tex] and [tex]\( -16 \)[/tex] in the wrong places.
- The third and fourth options are incorrect because they incorrectly place the initial height [tex]\( 3 \)[/tex] on the left side of the equation instead of incorporating it consistently on the right side as the constant term.
Therefore, the correct quadratic equation that models the situation is:
[tex]\[ h(t) = -16 t^2 + 50 t + 3 \][/tex]
This corresponds to option 2.
[tex]\[ h(t) = a t^2 + v t + h_0 \][/tex]
Here, [tex]\( a \)[/tex] represents the acceleration due to gravity, [tex]\( v \)[/tex] represents the initial velocity, and [tex]\( h_0 \)[/tex] represents the initial height.
Given the information:
- The initial velocity [tex]\( v \)[/tex] is 50 feet per second.
- The acceleration due to gravity [tex]\( a \)[/tex] is [tex]\( -16 \)[/tex] feet per second squared.
- The initial height [tex]\( h_0 \)[/tex] is 3 feet.
Let's translate these values into the quadratic equation format:
1. The acceleration [tex]\( a \)[/tex] is [tex]\( -16 \)[/tex], which will be multiplied by [tex]\( t^2 \)[/tex].
2. The initial velocity [tex]\( v \)[/tex] is [tex]\( 50 \)[/tex], which will be multiplied by [tex]\( t \)[/tex].
3. The initial height [tex]\( h_0 \)[/tex] is [tex]\( 3 \)[/tex], which will be added as a constant term.
So, plugging the given values into the equation [tex]\( h(t) = a t^2 + v t + h_0 \)[/tex], we get:
[tex]\[ h(t) = -16 t^2 + 50 t + 3 \][/tex]
Now let's examine the different options given in the problem:
1. [tex]\( h(t) = 50 t^2 - 16 t + 3 \)[/tex]
2. [tex]\( h(t) = -16 t^2 + 50 t + 3 \)[/tex]
3. [tex]\( 3 = -16 t^2 + 50 t + h_0 \)[/tex]
4. [tex]\( 3 = 50 t^2 - 16 t + h_0 \)[/tex]
Analyzing these:
- The first option is incorrect because it has the coefficients [tex]\( 50 \)[/tex] and [tex]\( -16 \)[/tex] in the wrong places.
- The third and fourth options are incorrect because they incorrectly place the initial height [tex]\( 3 \)[/tex] on the left side of the equation instead of incorporating it consistently on the right side as the constant term.
Therefore, the correct quadratic equation that models the situation is:
[tex]\[ h(t) = -16 t^2 + 50 t + 3 \][/tex]
This corresponds to option 2.
Visit us again for up-to-date and reliable answers. We're always ready to assist you with your informational needs. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. We're here to help at Westonci.ca. Keep visiting for the best answers to your questions.