Westonci.ca offers quick and accurate answers to your questions. Join our community and get the insights you need today. Discover solutions to your questions from experienced professionals across multiple fields on our comprehensive Q&A platform. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.
Sagot :
To model the situation of the softball being pitched, we need to form a quadratic equation that describes its height [tex]\( h(t) \)[/tex] at any time [tex]\( t \)[/tex]. The general form of the quadratic equation for the height in projectile motion is given by:
[tex]\[ h(t) = a t^2 + v t + h_0 \][/tex]
Here, [tex]\( a \)[/tex] represents the acceleration due to gravity, [tex]\( v \)[/tex] represents the initial velocity, and [tex]\( h_0 \)[/tex] represents the initial height.
Given the information:
- The initial velocity [tex]\( v \)[/tex] is 50 feet per second.
- The acceleration due to gravity [tex]\( a \)[/tex] is [tex]\( -16 \)[/tex] feet per second squared.
- The initial height [tex]\( h_0 \)[/tex] is 3 feet.
Let's translate these values into the quadratic equation format:
1. The acceleration [tex]\( a \)[/tex] is [tex]\( -16 \)[/tex], which will be multiplied by [tex]\( t^2 \)[/tex].
2. The initial velocity [tex]\( v \)[/tex] is [tex]\( 50 \)[/tex], which will be multiplied by [tex]\( t \)[/tex].
3. The initial height [tex]\( h_0 \)[/tex] is [tex]\( 3 \)[/tex], which will be added as a constant term.
So, plugging the given values into the equation [tex]\( h(t) = a t^2 + v t + h_0 \)[/tex], we get:
[tex]\[ h(t) = -16 t^2 + 50 t + 3 \][/tex]
Now let's examine the different options given in the problem:
1. [tex]\( h(t) = 50 t^2 - 16 t + 3 \)[/tex]
2. [tex]\( h(t) = -16 t^2 + 50 t + 3 \)[/tex]
3. [tex]\( 3 = -16 t^2 + 50 t + h_0 \)[/tex]
4. [tex]\( 3 = 50 t^2 - 16 t + h_0 \)[/tex]
Analyzing these:
- The first option is incorrect because it has the coefficients [tex]\( 50 \)[/tex] and [tex]\( -16 \)[/tex] in the wrong places.
- The third and fourth options are incorrect because they incorrectly place the initial height [tex]\( 3 \)[/tex] on the left side of the equation instead of incorporating it consistently on the right side as the constant term.
Therefore, the correct quadratic equation that models the situation is:
[tex]\[ h(t) = -16 t^2 + 50 t + 3 \][/tex]
This corresponds to option 2.
[tex]\[ h(t) = a t^2 + v t + h_0 \][/tex]
Here, [tex]\( a \)[/tex] represents the acceleration due to gravity, [tex]\( v \)[/tex] represents the initial velocity, and [tex]\( h_0 \)[/tex] represents the initial height.
Given the information:
- The initial velocity [tex]\( v \)[/tex] is 50 feet per second.
- The acceleration due to gravity [tex]\( a \)[/tex] is [tex]\( -16 \)[/tex] feet per second squared.
- The initial height [tex]\( h_0 \)[/tex] is 3 feet.
Let's translate these values into the quadratic equation format:
1. The acceleration [tex]\( a \)[/tex] is [tex]\( -16 \)[/tex], which will be multiplied by [tex]\( t^2 \)[/tex].
2. The initial velocity [tex]\( v \)[/tex] is [tex]\( 50 \)[/tex], which will be multiplied by [tex]\( t \)[/tex].
3. The initial height [tex]\( h_0 \)[/tex] is [tex]\( 3 \)[/tex], which will be added as a constant term.
So, plugging the given values into the equation [tex]\( h(t) = a t^2 + v t + h_0 \)[/tex], we get:
[tex]\[ h(t) = -16 t^2 + 50 t + 3 \][/tex]
Now let's examine the different options given in the problem:
1. [tex]\( h(t) = 50 t^2 - 16 t + 3 \)[/tex]
2. [tex]\( h(t) = -16 t^2 + 50 t + 3 \)[/tex]
3. [tex]\( 3 = -16 t^2 + 50 t + h_0 \)[/tex]
4. [tex]\( 3 = 50 t^2 - 16 t + h_0 \)[/tex]
Analyzing these:
- The first option is incorrect because it has the coefficients [tex]\( 50 \)[/tex] and [tex]\( -16 \)[/tex] in the wrong places.
- The third and fourth options are incorrect because they incorrectly place the initial height [tex]\( 3 \)[/tex] on the left side of the equation instead of incorporating it consistently on the right side as the constant term.
Therefore, the correct quadratic equation that models the situation is:
[tex]\[ h(t) = -16 t^2 + 50 t + 3 \][/tex]
This corresponds to option 2.
Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Stay curious and keep coming back to Westonci.ca for answers to all your burning questions.