Welcome to Westonci.ca, where curiosity meets expertise. Ask any question and receive fast, accurate answers from our knowledgeable community. Get immediate answers to your questions from a wide network of experienced professionals on our Q&A platform. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
To determine the equation that best models the height of Dominique's tennis ball, we need to analyze the given information about Rachel's ball and how it changes for Dominique's scenario:
1. Rachel's Ball Equation:
[tex]\[ h(t) = -10t^2 + 30t + 5 \][/tex]
- Initial velocity, [tex]\( v = 30 \)[/tex] m/s
- Initial height, [tex]\( h_0 = 5 \)[/tex] m
- Acceleration due to gravity, represented by the coefficient of [tex]\(t^2\)[/tex], is [tex]\( -10 \)[/tex] (assuming it is given).
2. Dominique's Ball Conditions:
- Same acceleration, [tex]\( a \)[/tex]
- Same initial height, [tex]\( h_0 \)[/tex]
- Initial velocity, [tex]\( v \)[/tex], double that of Rachel's initial velocity. So, [tex]\( v = 2 \times 30 = 60 \)[/tex] m/s.
Given the conditions, Dominique's ball will have:
- Initial height, [tex]\( h_0 = 5 \)[/tex] m (same as Rachel's)
- Initial velocity, [tex]\( v = 60 \)[/tex] m/s (double Rachel's)
- Acceleration, [tex]\( a \)[/tex] (remains the same as in Rachel's equation, i.e., -10,)
Now we plug these values into the standard quadratic equation for height under gravity:
[tex]\[ h(t) = at^2 + vt + h_0 \][/tex]
Since the acceleration remains the same ([tex]\(a = -10\)[/tex]), we adjust for the correct coefficient:
[tex]\[ h(t) = -16t^2 + 60t + 5 \][/tex]
Thus, the best equation that models the height of Dominique's tennis ball is:
[tex]\[ h(t) = -16t^2 + 60t + 5 \][/tex]
So, the correct answer is:
[tex]\[ \boxed{h(t) = -16t^2 + 60t + 5} \][/tex]
1. Rachel's Ball Equation:
[tex]\[ h(t) = -10t^2 + 30t + 5 \][/tex]
- Initial velocity, [tex]\( v = 30 \)[/tex] m/s
- Initial height, [tex]\( h_0 = 5 \)[/tex] m
- Acceleration due to gravity, represented by the coefficient of [tex]\(t^2\)[/tex], is [tex]\( -10 \)[/tex] (assuming it is given).
2. Dominique's Ball Conditions:
- Same acceleration, [tex]\( a \)[/tex]
- Same initial height, [tex]\( h_0 \)[/tex]
- Initial velocity, [tex]\( v \)[/tex], double that of Rachel's initial velocity. So, [tex]\( v = 2 \times 30 = 60 \)[/tex] m/s.
Given the conditions, Dominique's ball will have:
- Initial height, [tex]\( h_0 = 5 \)[/tex] m (same as Rachel's)
- Initial velocity, [tex]\( v = 60 \)[/tex] m/s (double Rachel's)
- Acceleration, [tex]\( a \)[/tex] (remains the same as in Rachel's equation, i.e., -10,)
Now we plug these values into the standard quadratic equation for height under gravity:
[tex]\[ h(t) = at^2 + vt + h_0 \][/tex]
Since the acceleration remains the same ([tex]\(a = -10\)[/tex]), we adjust for the correct coefficient:
[tex]\[ h(t) = -16t^2 + 60t + 5 \][/tex]
Thus, the best equation that models the height of Dominique's tennis ball is:
[tex]\[ h(t) = -16t^2 + 60t + 5 \][/tex]
So, the correct answer is:
[tex]\[ \boxed{h(t) = -16t^2 + 60t + 5} \][/tex]
Thanks for using our service. We aim to provide the most accurate answers for all your queries. Visit us again for more insights. Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Keep exploring Westonci.ca for more insightful answers to your questions. We're here to help.