Discover a world of knowledge at Westonci.ca, where experts and enthusiasts come together to answer your questions. Discover precise answers to your questions from a wide range of experts on our user-friendly Q&A platform. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
To find the equations of the straight lines passing through the point of intersection of the lines [tex]\(2x - 3y + 1 = 0\)[/tex] and [tex]\(x + y - 2 = 0\)[/tex] that make an angle of [tex]\(45^\circ\)[/tex] with the line [tex]\(x + 2y - 5 = 0\)[/tex], we can proceed step-by-step as follows:
### Step 1: Find the Point of Intersection
First, we need to find the point of intersection of the lines [tex]\(2x - 3y + 1 = 0\)[/tex] and [tex]\(x + y - 2 = 0\)[/tex].
1. Solve the system of equations:
[tex]\[ x + y - 2 = 0 \][/tex]
[tex]\[ y = 2 - x \][/tex]
2. Substitute [tex]\( y = 2 - x \)[/tex] into [tex]\(2x - 3y + 1 = 0\)[/tex]:
[tex]\[ 2x - 3(2 - x) + 1 = 0 \][/tex]
[tex]\[ 2x - 6 + 3x + 1 = 0 \][/tex]
[tex]\[ 5x - 5 = 0 \][/tex]
[tex]\[ x = 1 \][/tex]
[tex]\[ y = 2 - 1 = 1 \][/tex]
Therefore, the point of intersection is [tex]\((1, 1)\)[/tex].
### Step 2: Determine the Slope of the Given Line
We need the slope of the line [tex]\(x + 2y - 5 = 0\)[/tex].
1. Rewrite the equation in slope-intercept form [tex]\(y = mx + c\)[/tex]:
[tex]\[ x + 2y - 5 = 0 \][/tex]
[tex]\[ 2y = -x + 5 \][/tex]
[tex]\[ y = -\frac{1}{2}x + \frac{5}{2} \][/tex]
Thus, the slope ([tex]\(m_2\)[/tex]) of the line [tex]\(x + 2y - 5 = 0\)[/tex] is [tex]\(-\frac{1}{2}\)[/tex].
### Step 3: Determine the Slopes of the Desired Lines
To find the lines making a [tex]\(45^\circ\)[/tex] angle with the slope [tex]\(m_2 = -\frac{1}{2}\)[/tex], we use the tangent formula for angles between two lines:
[tex]\[ \left| \frac{m_1 - m_2}{1 + m_1 m_2} \right| = \tan(45^\circ) = 1 \][/tex]
where [tex]\(m_1\)[/tex] is the slope of the desired line.
Substitute [tex]\(m_2 = -\frac{1}{2}\)[/tex]:
[tex]\[ \left| \frac{m_1 + \frac{1}{2}}{1 - \frac{1}{2}m_1} \right| = 1 \][/tex]
This gives two cases:
[tex]\[ \frac{m_1 + \frac{1}{2}}{1 - \frac{1}{2}m_1} = 1 \][/tex]
[tex]\[ \frac{m_1 + \frac{1}{2}}{1 - \frac{1}{2}m_1} = -1 \][/tex]
Solve these equations separately:
1. First case ([tex]\( \frac{m_1 + \frac{1}{2}}{1 - \frac{1}{2}m_1} = 1 \)[/tex]):
[tex]\[ m_1 + \frac{1}{2} = 1 - \frac{1}{2}m_1 \][/tex]
[tex]\[ m_1 + \frac{1}{2}m_1 = 1 - \frac{1}{2} \][/tex]
[tex]\[ \frac{3}{2}m_1 = \frac{1}{2} \][/tex]
[tex]\[ m_1 = \frac{1}{3} \][/tex]
2. Second case ([tex]\( \frac{m_1 + \frac{1}{2}}{1 - \frac{1}{2}m_1} = -1 \)[/tex]):
[tex]\[ m_1 + \frac{1}{2} = - (1 - \frac{1}{2}m_1) \][/tex]
[tex]\[ m_1 + \frac{1}{2} = -1 + \frac{1}{2}m_1 \][/tex]
[tex]\[ m_1 - \frac{1}{2}m_1 = -1 - \frac{1}{2} \][/tex]
[tex]\[ \frac{1}{2}m_1 = -\frac{3}{2} \][/tex]
[tex]\[ m_1 = -3 \][/tex]
### Step 4: Equations of the Desired Lines
Using the point-slope form of the line equation, we can write the equations of the lines passing through [tex]\((1, 1)\)[/tex]:
1. For [tex]\(m_1 = \frac{1}{3}\)[/tex]:
[tex]\[ y - 1 = \frac{1}{3}(x - 1) \][/tex]
[tex]\[ y - 1 = \frac{1}{3}x - \frac{1}{3} \][/tex]
[tex]\[ y = \frac{1}{3}x + \frac{2}{3} \][/tex]
Multiplying by 3 to get the standard form:
[tex]\[ 3y = x + 2 \][/tex]
[tex]\[ x - 3y + 2 = 0 \][/tex]
2. For [tex]\(m_1 = -3\)[/tex]:
[tex]\[ y - 1 = -3(x - 1) \][/tex]
[tex]\[ y - 1 = -3x + 3 \][/tex]
[tex]\[ y = -3x + 4 \][/tex]
Multiplying by 1 to get the standard form:
[tex]\[ 3x + y - 4 = 0 \][/tex]
### Final Answer
The equations of the straight lines passing through the point of intersection of [tex]\(2x - 3y + 1 = 0\)[/tex] and [tex]\(x + y - 2 = 0\)[/tex] and making a [tex]\(45^\circ\)[/tex] angle with [tex]\(x + 2y - 5 = 0\)[/tex] are:
[tex]\[ x - 3y + 2 = 0 \][/tex]
[tex]\[ 3x + y - 4 = 0 \][/tex]
### Step 1: Find the Point of Intersection
First, we need to find the point of intersection of the lines [tex]\(2x - 3y + 1 = 0\)[/tex] and [tex]\(x + y - 2 = 0\)[/tex].
1. Solve the system of equations:
[tex]\[ x + y - 2 = 0 \][/tex]
[tex]\[ y = 2 - x \][/tex]
2. Substitute [tex]\( y = 2 - x \)[/tex] into [tex]\(2x - 3y + 1 = 0\)[/tex]:
[tex]\[ 2x - 3(2 - x) + 1 = 0 \][/tex]
[tex]\[ 2x - 6 + 3x + 1 = 0 \][/tex]
[tex]\[ 5x - 5 = 0 \][/tex]
[tex]\[ x = 1 \][/tex]
[tex]\[ y = 2 - 1 = 1 \][/tex]
Therefore, the point of intersection is [tex]\((1, 1)\)[/tex].
### Step 2: Determine the Slope of the Given Line
We need the slope of the line [tex]\(x + 2y - 5 = 0\)[/tex].
1. Rewrite the equation in slope-intercept form [tex]\(y = mx + c\)[/tex]:
[tex]\[ x + 2y - 5 = 0 \][/tex]
[tex]\[ 2y = -x + 5 \][/tex]
[tex]\[ y = -\frac{1}{2}x + \frac{5}{2} \][/tex]
Thus, the slope ([tex]\(m_2\)[/tex]) of the line [tex]\(x + 2y - 5 = 0\)[/tex] is [tex]\(-\frac{1}{2}\)[/tex].
### Step 3: Determine the Slopes of the Desired Lines
To find the lines making a [tex]\(45^\circ\)[/tex] angle with the slope [tex]\(m_2 = -\frac{1}{2}\)[/tex], we use the tangent formula for angles between two lines:
[tex]\[ \left| \frac{m_1 - m_2}{1 + m_1 m_2} \right| = \tan(45^\circ) = 1 \][/tex]
where [tex]\(m_1\)[/tex] is the slope of the desired line.
Substitute [tex]\(m_2 = -\frac{1}{2}\)[/tex]:
[tex]\[ \left| \frac{m_1 + \frac{1}{2}}{1 - \frac{1}{2}m_1} \right| = 1 \][/tex]
This gives two cases:
[tex]\[ \frac{m_1 + \frac{1}{2}}{1 - \frac{1}{2}m_1} = 1 \][/tex]
[tex]\[ \frac{m_1 + \frac{1}{2}}{1 - \frac{1}{2}m_1} = -1 \][/tex]
Solve these equations separately:
1. First case ([tex]\( \frac{m_1 + \frac{1}{2}}{1 - \frac{1}{2}m_1} = 1 \)[/tex]):
[tex]\[ m_1 + \frac{1}{2} = 1 - \frac{1}{2}m_1 \][/tex]
[tex]\[ m_1 + \frac{1}{2}m_1 = 1 - \frac{1}{2} \][/tex]
[tex]\[ \frac{3}{2}m_1 = \frac{1}{2} \][/tex]
[tex]\[ m_1 = \frac{1}{3} \][/tex]
2. Second case ([tex]\( \frac{m_1 + \frac{1}{2}}{1 - \frac{1}{2}m_1} = -1 \)[/tex]):
[tex]\[ m_1 + \frac{1}{2} = - (1 - \frac{1}{2}m_1) \][/tex]
[tex]\[ m_1 + \frac{1}{2} = -1 + \frac{1}{2}m_1 \][/tex]
[tex]\[ m_1 - \frac{1}{2}m_1 = -1 - \frac{1}{2} \][/tex]
[tex]\[ \frac{1}{2}m_1 = -\frac{3}{2} \][/tex]
[tex]\[ m_1 = -3 \][/tex]
### Step 4: Equations of the Desired Lines
Using the point-slope form of the line equation, we can write the equations of the lines passing through [tex]\((1, 1)\)[/tex]:
1. For [tex]\(m_1 = \frac{1}{3}\)[/tex]:
[tex]\[ y - 1 = \frac{1}{3}(x - 1) \][/tex]
[tex]\[ y - 1 = \frac{1}{3}x - \frac{1}{3} \][/tex]
[tex]\[ y = \frac{1}{3}x + \frac{2}{3} \][/tex]
Multiplying by 3 to get the standard form:
[tex]\[ 3y = x + 2 \][/tex]
[tex]\[ x - 3y + 2 = 0 \][/tex]
2. For [tex]\(m_1 = -3\)[/tex]:
[tex]\[ y - 1 = -3(x - 1) \][/tex]
[tex]\[ y - 1 = -3x + 3 \][/tex]
[tex]\[ y = -3x + 4 \][/tex]
Multiplying by 1 to get the standard form:
[tex]\[ 3x + y - 4 = 0 \][/tex]
### Final Answer
The equations of the straight lines passing through the point of intersection of [tex]\(2x - 3y + 1 = 0\)[/tex] and [tex]\(x + y - 2 = 0\)[/tex] and making a [tex]\(45^\circ\)[/tex] angle with [tex]\(x + 2y - 5 = 0\)[/tex] are:
[tex]\[ x - 3y + 2 = 0 \][/tex]
[tex]\[ 3x + y - 4 = 0 \][/tex]
Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Westonci.ca is committed to providing accurate answers. Come back soon for more trustworthy information.