Discover the answers you need at Westonci.ca, a dynamic Q&A platform where knowledge is shared freely by a community of experts. Get immediate and reliable solutions to your questions from a community of experienced experts on our Q&A platform. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.

Find the sum of the roots of the equation [tex]2x^2 + 3x - 9 = 0[/tex].

A. [tex]\(-18\)[/tex]
B. [tex]\(-6\)[/tex]
C. [tex]\(\frac{-9}{2}\)[/tex]
D. [tex]\(\frac{-3}{2}\)[/tex]


Sagot :

To find the sum of the roots of the quadratic equation [tex]\(2x^2 + 3x - 9 = 0\)[/tex], we use a property from algebra known as Vieta's formulas. Vieta's formulas relate the coefficients of a polynomial to sums and products of its roots.

For a quadratic equation of the form [tex]\(ax^2 + bx + c = 0\)[/tex], the sum of the roots [tex]\(r_1\)[/tex] and [tex]\(r_2\)[/tex] is given by:

[tex]\[ r_1 + r_2 = -\frac{b}{a} \][/tex]

Now, for the quadratic equation [tex]\(2x^2 + 3x - 9 = 0\)[/tex]:

- [tex]\(a = 2\)[/tex]
- [tex]\(b = 3\)[/tex]
- [tex]\(c = -9\)[/tex]

Using the formula to find the sum of the roots:

[tex]\[ r_1 + r_2 = -\frac{b}{a} = -\frac{3}{2} \][/tex]

Hence, the sum of the roots of the equation [tex]\(2x^2 + 3x - 9 = 0\)[/tex] is:

[tex]\[ -\frac{3}{2} \][/tex]

Therefore, the correct answer is [tex]\( \boxed{-\frac{3}{2}} \)[/tex].