Westonci.ca is the Q&A platform that connects you with experts who provide accurate and detailed answers. Join our Q&A platform and connect with professionals ready to provide precise answers to your questions in various areas. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.

Find the exact value of [tex]\cos \left[\sin ^{-1}\left(\frac{-4}{5}\right)\right][/tex].

Sagot :

To find the exact value of [tex]\(\cos \left[\sin ^{-1}\left(\frac{-4}{5}\right)\right]\)[/tex], follow these steps:

1. Understand the Problem:
We need to find the cosine of an angle whose sine is [tex]\(\frac{-4}{5}\)[/tex].

2. Identify the Given Value:
Let's denote the angle by [tex]\(\theta\)[/tex]. We are given [tex]\(\sin \theta = \frac{-4}{5}\)[/tex].

3. Recall the Fundamental Trigonometric Identity:
Use the Pythagorean identity which states:
[tex]\[ \sin^2 \theta + \cos^2 \theta = 1 \][/tex]

4. Substitute the Given Sine Value:
Substitute [tex]\(\sin \theta = \frac{-4}{5}\)[/tex] into the identity:
[tex]\[ \left(\frac{-4}{5}\right)^2 + \cos^2 \theta = 1 \][/tex]

5. Simplify the Equation:
Calculate [tex]\(\left(\frac{-4}{5}\right)^2\)[/tex]:
[tex]\[ \left(\frac{-4}{5}\right)^2 = \frac{16}{25} \][/tex]
Now, write the equation:
[tex]\[ \frac{16}{25} + \cos^2 \theta = 1 \][/tex]

6. Solve for [tex]\(\cos^2 \theta\)[/tex]:
Rearrange the equation to solve for [tex]\(\cos^2 \theta\)[/tex]:
[tex]\[ \cos^2 \theta = 1 - \frac{16}{25} \][/tex]
Find the common denominator:
[tex]\[ \cos^2 \theta = \frac{25}{25} - \frac{16}{25} = \frac{9}{25} \][/tex]

7. Take the Square Root:
To find [tex]\(\cos \theta\)[/tex], take the square root of both sides. Note that cosine can be positive or negative depending on the quadrant. However, since [tex]\(\sin \theta = \frac{-4}{5}\)[/tex] indicates that [tex]\(\theta\)[/tex] is in the third or fourth quadrant, where cosine is positive in the fourth quadrant and negative in the third quadrant.

Evaluating for [tex]\(\cos \theta\)[/tex]:
[tex]\[ \cos \theta = \pm \sqrt{\frac{9}{25}} = \pm \frac{3}{5} \][/tex]

8. Determine the Correct Sign:
Knowing that [tex]\(\sin \theta = \frac{-4}{5}\)[/tex] typically places [tex]\(\theta\)[/tex] in the fourth quadrant (negative sine and positive cosine):
[tex]\[ \cos \theta = \frac{3}{5} \][/tex]

Therefore, the exact value of [tex]\(\cos \left[\sin ^{-1}\left(\frac{-4}{5}\right)\right]\)[/tex] is:
[tex]\[ \boxed{0.6} \][/tex]
We hope this information was helpful. Feel free to return anytime for more answers to your questions and concerns. We hope this was helpful. Please come back whenever you need more information or answers to your queries. We're glad you chose Westonci.ca. Revisit us for updated answers from our knowledgeable team.