Explore Westonci.ca, the top Q&A platform where your questions are answered by professionals and enthusiasts alike. Connect with professionals on our platform to receive accurate answers to your questions quickly and efficiently. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
Let's break down the given function [tex]\( f(t) = 1.8(1.2)^t \)[/tex] to understand its parts and answer the questions step-by-step:
1. Initial Population:
The term [tex]\( 1.8 \)[/tex] in the function [tex]\( f(t) \)[/tex] represents the initial number of caribou in hundreds because at [tex]\( t = 0 \)[/tex],
[tex]\[ f(0) = 1.8 \cdot (1.2)^0 = 1.8 \cdot 1 = 1.8 \text{ (hundreds of caribou)}. \][/tex]
Therefore, the initial number of caribou in the tundra is [tex]\( 1.8 \times 100 = 180 \)[/tex] caribou.
2. Time Unit for Population Increase:
The exponent [tex]\( t \)[/tex] represents the time in years. Hence, the population factor increase happens every 1 year.
3. Factor of Population Increase:
The base [tex]\( 1.2 \)[/tex] in the function indicates the population increases by a factor of [tex]\( 1.2 \)[/tex] each year.
By filling in these values in the context of the given function:
Initially, the tundra has [tex]\( \boxed{180} \)[/tex] caribou, and every [tex]\( \boxed{1 \text{ year}} \)[/tex], the number of caribou increases by a factor of [tex]\( \boxed{1.2} \)[/tex].
1. Initial Population:
The term [tex]\( 1.8 \)[/tex] in the function [tex]\( f(t) \)[/tex] represents the initial number of caribou in hundreds because at [tex]\( t = 0 \)[/tex],
[tex]\[ f(0) = 1.8 \cdot (1.2)^0 = 1.8 \cdot 1 = 1.8 \text{ (hundreds of caribou)}. \][/tex]
Therefore, the initial number of caribou in the tundra is [tex]\( 1.8 \times 100 = 180 \)[/tex] caribou.
2. Time Unit for Population Increase:
The exponent [tex]\( t \)[/tex] represents the time in years. Hence, the population factor increase happens every 1 year.
3. Factor of Population Increase:
The base [tex]\( 1.2 \)[/tex] in the function indicates the population increases by a factor of [tex]\( 1.2 \)[/tex] each year.
By filling in these values in the context of the given function:
Initially, the tundra has [tex]\( \boxed{180} \)[/tex] caribou, and every [tex]\( \boxed{1 \text{ year}} \)[/tex], the number of caribou increases by a factor of [tex]\( \boxed{1.2} \)[/tex].
We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. We're glad you visited Westonci.ca. Return anytime for updated answers from our knowledgeable team.