Westonci.ca offers fast, accurate answers to your questions. Join our community and get the insights you need now. Explore thousands of questions and answers from a knowledgeable community of experts ready to help you find solutions. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.
Sagot :
Certainly! Let's analyze the given expression step by step.
We need to find what the expression [tex]\(\frac{2 \tan \left(10^{\circ}\right)}{1-\tan ^2\left(10^{\circ}\right)}\)[/tex] simplifies to in terms of a single trigonometric ratio.
Recall the double-angle identity for tangent:
[tex]\[ \tan(2x) = \frac{2 \tan(x)}{1 - \tan^2(x)} \][/tex]
If we let [tex]\( x = 10^\circ \)[/tex], we get:
[tex]\[ \tan(2 \times 10^\circ) = \frac{2 \tan(10^\circ)}{1 - \tan^2(10^\circ)} \][/tex]
Simplifying this expression, we obtain:
[tex]\[ \tan(20^\circ) = \frac{2 \tan(10^\circ)}{1 - \tan^2(10^\circ)} \][/tex]
Thus,
[tex]\[ \frac{2 \tan \left(10^{\circ}\right)}{1-\tan ^2\left(10^{\circ}\right)} = \tan(20^\circ) \][/tex]
Therefore, the given expression [tex]\(\frac{2 \tan \left(10^{\circ}\right)}{1-\tan ^2\left(10^{\circ}\right)}\)[/tex] is best represented by [tex]\(\tan(20^\circ)\)[/tex].
So, the correct answer is:
[tex]\[ \boxed{\tan \left(20^{\circ}\right)} \][/tex]
We need to find what the expression [tex]\(\frac{2 \tan \left(10^{\circ}\right)}{1-\tan ^2\left(10^{\circ}\right)}\)[/tex] simplifies to in terms of a single trigonometric ratio.
Recall the double-angle identity for tangent:
[tex]\[ \tan(2x) = \frac{2 \tan(x)}{1 - \tan^2(x)} \][/tex]
If we let [tex]\( x = 10^\circ \)[/tex], we get:
[tex]\[ \tan(2 \times 10^\circ) = \frac{2 \tan(10^\circ)}{1 - \tan^2(10^\circ)} \][/tex]
Simplifying this expression, we obtain:
[tex]\[ \tan(20^\circ) = \frac{2 \tan(10^\circ)}{1 - \tan^2(10^\circ)} \][/tex]
Thus,
[tex]\[ \frac{2 \tan \left(10^{\circ}\right)}{1-\tan ^2\left(10^{\circ}\right)} = \tan(20^\circ) \][/tex]
Therefore, the given expression [tex]\(\frac{2 \tan \left(10^{\circ}\right)}{1-\tan ^2\left(10^{\circ}\right)}\)[/tex] is best represented by [tex]\(\tan(20^\circ)\)[/tex].
So, the correct answer is:
[tex]\[ \boxed{\tan \left(20^{\circ}\right)} \][/tex]
Visit us again for up-to-date and reliable answers. We're always ready to assist you with your informational needs. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Thank you for visiting Westonci.ca, your go-to source for reliable answers. Come back soon for more expert insights.