Find the best answers to your questions at Westonci.ca, where experts and enthusiasts provide accurate, reliable information. Explore thousands of questions and answers from a knowledgeable community of experts on our user-friendly platform. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.
Sagot :
To solve the problem [tex]\(\sin^{-1}\left(\tan\left(\frac{\pi}{4}\right)\right)\)[/tex], we need to evaluate it step-by-step.
First, let's evaluate the inner function [tex]\(\tan\left(\frac{\pi}{4}\right)\)[/tex].
Recall that:
[tex]\[ \tan\left(\frac{\pi}{4}\right) = 1 \][/tex]
Next, we need to evaluate the inverse sine (arcsine) of [tex]\(1\)[/tex]:
[tex]\[ \sin^{-1}(1) \][/tex]
By definition, [tex]\(\sin^{-1}(x)\)[/tex] is the value [tex]\(y\)[/tex] such that [tex]\(\sin(y) = x\)[/tex] and [tex]\(y\)[/tex] lies in the range [tex]\([- \frac{\pi}{2}, \frac{\pi}{2}]\)[/tex].
The value of [tex]\(y\)[/tex] that satisfies [tex]\(\sin(y) = 1\)[/tex] within this range is:
[tex]\[ \frac{\pi}{2} \][/tex]
Thus:
[tex]\[ \sin^{-1}(1) = \frac{\pi}{2} \][/tex]
Therefore:
[tex]\[ \sin^{-1}\left(\tan\left(\frac{\pi}{4}\right)\right) = \frac{\pi}{2} \][/tex]
Given the possible options:
[tex]\[ 0, \frac{\pi}{2}, \pi, 2\pi \][/tex]
The correct one is:
[tex]\[ \boxed{\frac{\pi}{2}} \][/tex]
First, let's evaluate the inner function [tex]\(\tan\left(\frac{\pi}{4}\right)\)[/tex].
Recall that:
[tex]\[ \tan\left(\frac{\pi}{4}\right) = 1 \][/tex]
Next, we need to evaluate the inverse sine (arcsine) of [tex]\(1\)[/tex]:
[tex]\[ \sin^{-1}(1) \][/tex]
By definition, [tex]\(\sin^{-1}(x)\)[/tex] is the value [tex]\(y\)[/tex] such that [tex]\(\sin(y) = x\)[/tex] and [tex]\(y\)[/tex] lies in the range [tex]\([- \frac{\pi}{2}, \frac{\pi}{2}]\)[/tex].
The value of [tex]\(y\)[/tex] that satisfies [tex]\(\sin(y) = 1\)[/tex] within this range is:
[tex]\[ \frac{\pi}{2} \][/tex]
Thus:
[tex]\[ \sin^{-1}(1) = \frac{\pi}{2} \][/tex]
Therefore:
[tex]\[ \sin^{-1}\left(\tan\left(\frac{\pi}{4}\right)\right) = \frac{\pi}{2} \][/tex]
Given the possible options:
[tex]\[ 0, \frac{\pi}{2}, \pi, 2\pi \][/tex]
The correct one is:
[tex]\[ \boxed{\frac{\pi}{2}} \][/tex]
Thank you for visiting our platform. We hope you found the answers you were looking for. Come back anytime you need more information. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Thank you for using Westonci.ca. Come back for more in-depth answers to all your queries.