Westonci.ca is your go-to source for answers, with a community ready to provide accurate and timely information. Join our Q&A platform and connect with professionals ready to provide precise answers to your questions in various areas. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
To find the equation of the line tangent to the graph of the function [tex]\( f(x) = 4 - \cos(x) \)[/tex] at [tex]\( x = 0 \)[/tex], we'll follow these steps:
1. Find the derivative of [tex]\( f(x) \)[/tex] to determine the slope of the tangent line.
The function given is:
[tex]\[ f(x) = 4 - \cos(x) \][/tex]
To find the slope of the tangent line, we need to compute the derivative [tex]\( f'(x) \)[/tex]. The derivative of [tex]\( \cos(x) \)[/tex] is [tex]\( -\sin(x) \)[/tex]. Therefore:
[tex]\[ f'(x) = 0 + \sin(x) = \sin(x) \][/tex]
2. Evaluate the derivative at [tex]\( x = 0 \)[/tex] to find the slope at that point.
We need to find [tex]\( f'(0) \)[/tex]:
[tex]\[ f'(0) = \sin(0) = 0 \][/tex]
Therefore, the slope of the tangent line at [tex]\( x = 0 \)[/tex] is [tex]\( 0 \)[/tex].
3. Determine the y-coordinate of the function at [tex]\( x = 0 \)[/tex].
We calculate [tex]\( f(0) \)[/tex]:
[tex]\[ f(0) = 4 - \cos(0) = 4 - 1 = 3 \][/tex]
So the function passes through the point [tex]\( (0, 3) \)[/tex].
4. Use the point-slope form of the equation of a line to write the equation of the tangent line.
The point-slope form of a line is:
[tex]\[ y - y_1 = m(x - x_1) \][/tex]
Here, [tex]\( m \)[/tex] is the slope, and [tex]\( (x_1, y_1) \)[/tex] is the point of tangency. We have [tex]\( m = 0 \)[/tex] and the point [tex]\( (x_1, y_1) = (0, 3) \)[/tex].
Substituting in these values, we get:
[tex]\[ y - 3 = 0(x - 0) \][/tex]
Simplifying, we find:
[tex]\[ y = 3 \][/tex]
Therefore, the equation of the line tangent to the graph of [tex]\( f(x) = 4 - \cos(x) \)[/tex] at [tex]\( x = 0 \)[/tex] is:
[tex]\[ \boxed{y = 3} \][/tex]
1. Find the derivative of [tex]\( f(x) \)[/tex] to determine the slope of the tangent line.
The function given is:
[tex]\[ f(x) = 4 - \cos(x) \][/tex]
To find the slope of the tangent line, we need to compute the derivative [tex]\( f'(x) \)[/tex]. The derivative of [tex]\( \cos(x) \)[/tex] is [tex]\( -\sin(x) \)[/tex]. Therefore:
[tex]\[ f'(x) = 0 + \sin(x) = \sin(x) \][/tex]
2. Evaluate the derivative at [tex]\( x = 0 \)[/tex] to find the slope at that point.
We need to find [tex]\( f'(0) \)[/tex]:
[tex]\[ f'(0) = \sin(0) = 0 \][/tex]
Therefore, the slope of the tangent line at [tex]\( x = 0 \)[/tex] is [tex]\( 0 \)[/tex].
3. Determine the y-coordinate of the function at [tex]\( x = 0 \)[/tex].
We calculate [tex]\( f(0) \)[/tex]:
[tex]\[ f(0) = 4 - \cos(0) = 4 - 1 = 3 \][/tex]
So the function passes through the point [tex]\( (0, 3) \)[/tex].
4. Use the point-slope form of the equation of a line to write the equation of the tangent line.
The point-slope form of a line is:
[tex]\[ y - y_1 = m(x - x_1) \][/tex]
Here, [tex]\( m \)[/tex] is the slope, and [tex]\( (x_1, y_1) \)[/tex] is the point of tangency. We have [tex]\( m = 0 \)[/tex] and the point [tex]\( (x_1, y_1) = (0, 3) \)[/tex].
Substituting in these values, we get:
[tex]\[ y - 3 = 0(x - 0) \][/tex]
Simplifying, we find:
[tex]\[ y = 3 \][/tex]
Therefore, the equation of the line tangent to the graph of [tex]\( f(x) = 4 - \cos(x) \)[/tex] at [tex]\( x = 0 \)[/tex] is:
[tex]\[ \boxed{y = 3} \][/tex]
We appreciate your time. Please revisit us for more reliable answers to any questions you may have. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Keep exploring Westonci.ca for more insightful answers to your questions. We're here to help.