At Westonci.ca, we provide clear, reliable answers to all your questions. Join our vibrant community and get the solutions you need. Discover comprehensive solutions to your questions from a wide network of experts on our user-friendly platform. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.
Sagot :
To find the equation of the line tangent to the graph of the function [tex]\( f(x) = 4 - \cos(x) \)[/tex] at [tex]\( x = 0 \)[/tex], we'll follow these steps:
1. Find the derivative of [tex]\( f(x) \)[/tex] to determine the slope of the tangent line.
The function given is:
[tex]\[ f(x) = 4 - \cos(x) \][/tex]
To find the slope of the tangent line, we need to compute the derivative [tex]\( f'(x) \)[/tex]. The derivative of [tex]\( \cos(x) \)[/tex] is [tex]\( -\sin(x) \)[/tex]. Therefore:
[tex]\[ f'(x) = 0 + \sin(x) = \sin(x) \][/tex]
2. Evaluate the derivative at [tex]\( x = 0 \)[/tex] to find the slope at that point.
We need to find [tex]\( f'(0) \)[/tex]:
[tex]\[ f'(0) = \sin(0) = 0 \][/tex]
Therefore, the slope of the tangent line at [tex]\( x = 0 \)[/tex] is [tex]\( 0 \)[/tex].
3. Determine the y-coordinate of the function at [tex]\( x = 0 \)[/tex].
We calculate [tex]\( f(0) \)[/tex]:
[tex]\[ f(0) = 4 - \cos(0) = 4 - 1 = 3 \][/tex]
So the function passes through the point [tex]\( (0, 3) \)[/tex].
4. Use the point-slope form of the equation of a line to write the equation of the tangent line.
The point-slope form of a line is:
[tex]\[ y - y_1 = m(x - x_1) \][/tex]
Here, [tex]\( m \)[/tex] is the slope, and [tex]\( (x_1, y_1) \)[/tex] is the point of tangency. We have [tex]\( m = 0 \)[/tex] and the point [tex]\( (x_1, y_1) = (0, 3) \)[/tex].
Substituting in these values, we get:
[tex]\[ y - 3 = 0(x - 0) \][/tex]
Simplifying, we find:
[tex]\[ y = 3 \][/tex]
Therefore, the equation of the line tangent to the graph of [tex]\( f(x) = 4 - \cos(x) \)[/tex] at [tex]\( x = 0 \)[/tex] is:
[tex]\[ \boxed{y = 3} \][/tex]
1. Find the derivative of [tex]\( f(x) \)[/tex] to determine the slope of the tangent line.
The function given is:
[tex]\[ f(x) = 4 - \cos(x) \][/tex]
To find the slope of the tangent line, we need to compute the derivative [tex]\( f'(x) \)[/tex]. The derivative of [tex]\( \cos(x) \)[/tex] is [tex]\( -\sin(x) \)[/tex]. Therefore:
[tex]\[ f'(x) = 0 + \sin(x) = \sin(x) \][/tex]
2. Evaluate the derivative at [tex]\( x = 0 \)[/tex] to find the slope at that point.
We need to find [tex]\( f'(0) \)[/tex]:
[tex]\[ f'(0) = \sin(0) = 0 \][/tex]
Therefore, the slope of the tangent line at [tex]\( x = 0 \)[/tex] is [tex]\( 0 \)[/tex].
3. Determine the y-coordinate of the function at [tex]\( x = 0 \)[/tex].
We calculate [tex]\( f(0) \)[/tex]:
[tex]\[ f(0) = 4 - \cos(0) = 4 - 1 = 3 \][/tex]
So the function passes through the point [tex]\( (0, 3) \)[/tex].
4. Use the point-slope form of the equation of a line to write the equation of the tangent line.
The point-slope form of a line is:
[tex]\[ y - y_1 = m(x - x_1) \][/tex]
Here, [tex]\( m \)[/tex] is the slope, and [tex]\( (x_1, y_1) \)[/tex] is the point of tangency. We have [tex]\( m = 0 \)[/tex] and the point [tex]\( (x_1, y_1) = (0, 3) \)[/tex].
Substituting in these values, we get:
[tex]\[ y - 3 = 0(x - 0) \][/tex]
Simplifying, we find:
[tex]\[ y = 3 \][/tex]
Therefore, the equation of the line tangent to the graph of [tex]\( f(x) = 4 - \cos(x) \)[/tex] at [tex]\( x = 0 \)[/tex] is:
[tex]\[ \boxed{y = 3} \][/tex]
We appreciate your visit. Hopefully, the answers you found were beneficial. Don't hesitate to come back for more information. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. We're here to help at Westonci.ca. Keep visiting for the best answers to your questions.