At Westonci.ca, we provide clear, reliable answers to all your questions. Join our vibrant community and get the solutions you need. Our Q&A platform provides quick and trustworthy answers to your questions from experienced professionals in different areas of expertise. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
To find the equation of the line tangent to the graph of the function [tex]\( f(x) = 4 - \cos(x) \)[/tex] at [tex]\( x = 0 \)[/tex], we'll follow these steps:
1. Find the derivative of [tex]\( f(x) \)[/tex] to determine the slope of the tangent line.
The function given is:
[tex]\[ f(x) = 4 - \cos(x) \][/tex]
To find the slope of the tangent line, we need to compute the derivative [tex]\( f'(x) \)[/tex]. The derivative of [tex]\( \cos(x) \)[/tex] is [tex]\( -\sin(x) \)[/tex]. Therefore:
[tex]\[ f'(x) = 0 + \sin(x) = \sin(x) \][/tex]
2. Evaluate the derivative at [tex]\( x = 0 \)[/tex] to find the slope at that point.
We need to find [tex]\( f'(0) \)[/tex]:
[tex]\[ f'(0) = \sin(0) = 0 \][/tex]
Therefore, the slope of the tangent line at [tex]\( x = 0 \)[/tex] is [tex]\( 0 \)[/tex].
3. Determine the y-coordinate of the function at [tex]\( x = 0 \)[/tex].
We calculate [tex]\( f(0) \)[/tex]:
[tex]\[ f(0) = 4 - \cos(0) = 4 - 1 = 3 \][/tex]
So the function passes through the point [tex]\( (0, 3) \)[/tex].
4. Use the point-slope form of the equation of a line to write the equation of the tangent line.
The point-slope form of a line is:
[tex]\[ y - y_1 = m(x - x_1) \][/tex]
Here, [tex]\( m \)[/tex] is the slope, and [tex]\( (x_1, y_1) \)[/tex] is the point of tangency. We have [tex]\( m = 0 \)[/tex] and the point [tex]\( (x_1, y_1) = (0, 3) \)[/tex].
Substituting in these values, we get:
[tex]\[ y - 3 = 0(x - 0) \][/tex]
Simplifying, we find:
[tex]\[ y = 3 \][/tex]
Therefore, the equation of the line tangent to the graph of [tex]\( f(x) = 4 - \cos(x) \)[/tex] at [tex]\( x = 0 \)[/tex] is:
[tex]\[ \boxed{y = 3} \][/tex]
1. Find the derivative of [tex]\( f(x) \)[/tex] to determine the slope of the tangent line.
The function given is:
[tex]\[ f(x) = 4 - \cos(x) \][/tex]
To find the slope of the tangent line, we need to compute the derivative [tex]\( f'(x) \)[/tex]. The derivative of [tex]\( \cos(x) \)[/tex] is [tex]\( -\sin(x) \)[/tex]. Therefore:
[tex]\[ f'(x) = 0 + \sin(x) = \sin(x) \][/tex]
2. Evaluate the derivative at [tex]\( x = 0 \)[/tex] to find the slope at that point.
We need to find [tex]\( f'(0) \)[/tex]:
[tex]\[ f'(0) = \sin(0) = 0 \][/tex]
Therefore, the slope of the tangent line at [tex]\( x = 0 \)[/tex] is [tex]\( 0 \)[/tex].
3. Determine the y-coordinate of the function at [tex]\( x = 0 \)[/tex].
We calculate [tex]\( f(0) \)[/tex]:
[tex]\[ f(0) = 4 - \cos(0) = 4 - 1 = 3 \][/tex]
So the function passes through the point [tex]\( (0, 3) \)[/tex].
4. Use the point-slope form of the equation of a line to write the equation of the tangent line.
The point-slope form of a line is:
[tex]\[ y - y_1 = m(x - x_1) \][/tex]
Here, [tex]\( m \)[/tex] is the slope, and [tex]\( (x_1, y_1) \)[/tex] is the point of tangency. We have [tex]\( m = 0 \)[/tex] and the point [tex]\( (x_1, y_1) = (0, 3) \)[/tex].
Substituting in these values, we get:
[tex]\[ y - 3 = 0(x - 0) \][/tex]
Simplifying, we find:
[tex]\[ y = 3 \][/tex]
Therefore, the equation of the line tangent to the graph of [tex]\( f(x) = 4 - \cos(x) \)[/tex] at [tex]\( x = 0 \)[/tex] is:
[tex]\[ \boxed{y = 3} \][/tex]
Thank you for visiting our platform. We hope you found the answers you were looking for. Come back anytime you need more information. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Get the answers you need at Westonci.ca. Stay informed with our latest expert advice.