Welcome to Westonci.ca, the Q&A platform where your questions are met with detailed answers from experienced experts. Discover a wealth of knowledge from experts across different disciplines on our comprehensive Q&A platform. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
To solve the equation [tex]\(\cos(x + \pi) = \frac{1}{2}\)[/tex] over the interval [tex]\(\left[\frac{\pi}{2}, \pi\right]\)[/tex], we can follow a series of steps to find the correct value(s) of [tex]\(x\)[/tex].
1. Understand the given equation:
We start with the equation:
[tex]\[\cos(x + \pi) = \frac{1}{2}\][/tex]
2. Use the properties of cosine to simplify the equation:
We know from trigonometric identities that:
[tex]\[\cos(x + \pi) = -\cos(x)\][/tex]
Therefore, we can rewrite the equation as:
[tex]\[-\cos(x) = \frac{1}{2}\][/tex]
Simplifying this gives:
[tex]\[\cos(x) = -\frac{1}{2}\][/tex]
3. Find the general solutions for [tex]\(\cos(x) = -\frac{1}{2}\)[/tex]:
We need to determine where the cosine function is equal to [tex]\(-\frac{1}{2}\)[/tex]. On the unit circle, the value of [tex]\(\cos(x) = -\frac{1}{2}\)[/tex] at [tex]\(x = \frac{2\pi}{3}\)[/tex] and [tex]\(x = \frac{4\pi}{3}\)[/tex] within the domain of one period, [tex]\(0 \leq x \leq 2\pi\)[/tex].
4. Check if the solutions lie within the given interval [tex]\(\left[\frac{\pi}{2}, \pi\right]\)[/tex]:
We need to see if our solutions fall within the specified interval:
- The specific interval we are looking at is [tex]\(\left[\frac{\pi}{2}, \pi\right]\)[/tex].
- The value [tex]\(x = \frac{2\pi}{3}\)[/tex] is within the interval [tex]\(\left[\frac{\pi}{2}, \pi\right]\)[/tex] since [tex]\(\frac{\pi}{2} < \frac{2\pi}{3} < \pi\)[/tex].
- The value [tex]\(x = \frac{4\pi}{3}\)[/tex] is not within the interval [tex]\(\left[\frac{\pi}{2}, \pi\right]\)[/tex] since [tex]\(\frac{4\pi}{3} > \pi\)[/tex].
5. Identify the valid solution:
From the above analysis, the only valid solution within the interval [tex]\(\left[\frac{\pi}{2}, \pi\right]\)[/tex] is:
[tex]\[x = \frac{2\pi}{3}\][/tex]
Thus, the value [tex]\(x = \frac{2\pi}{3}\)[/tex] satisfies the equation [tex]\(\cos(x + \pi) = \frac{1}{2}\)[/tex] over the interval [tex]\(\left[\frac{\pi}{2},\pi\right]\)[/tex]. The correct answer is:
[tex]\[ \boxed{\frac{2\pi}{3}} \][/tex]
1. Understand the given equation:
We start with the equation:
[tex]\[\cos(x + \pi) = \frac{1}{2}\][/tex]
2. Use the properties of cosine to simplify the equation:
We know from trigonometric identities that:
[tex]\[\cos(x + \pi) = -\cos(x)\][/tex]
Therefore, we can rewrite the equation as:
[tex]\[-\cos(x) = \frac{1}{2}\][/tex]
Simplifying this gives:
[tex]\[\cos(x) = -\frac{1}{2}\][/tex]
3. Find the general solutions for [tex]\(\cos(x) = -\frac{1}{2}\)[/tex]:
We need to determine where the cosine function is equal to [tex]\(-\frac{1}{2}\)[/tex]. On the unit circle, the value of [tex]\(\cos(x) = -\frac{1}{2}\)[/tex] at [tex]\(x = \frac{2\pi}{3}\)[/tex] and [tex]\(x = \frac{4\pi}{3}\)[/tex] within the domain of one period, [tex]\(0 \leq x \leq 2\pi\)[/tex].
4. Check if the solutions lie within the given interval [tex]\(\left[\frac{\pi}{2}, \pi\right]\)[/tex]:
We need to see if our solutions fall within the specified interval:
- The specific interval we are looking at is [tex]\(\left[\frac{\pi}{2}, \pi\right]\)[/tex].
- The value [tex]\(x = \frac{2\pi}{3}\)[/tex] is within the interval [tex]\(\left[\frac{\pi}{2}, \pi\right]\)[/tex] since [tex]\(\frac{\pi}{2} < \frac{2\pi}{3} < \pi\)[/tex].
- The value [tex]\(x = \frac{4\pi}{3}\)[/tex] is not within the interval [tex]\(\left[\frac{\pi}{2}, \pi\right]\)[/tex] since [tex]\(\frac{4\pi}{3} > \pi\)[/tex].
5. Identify the valid solution:
From the above analysis, the only valid solution within the interval [tex]\(\left[\frac{\pi}{2}, \pi\right]\)[/tex] is:
[tex]\[x = \frac{2\pi}{3}\][/tex]
Thus, the value [tex]\(x = \frac{2\pi}{3}\)[/tex] satisfies the equation [tex]\(\cos(x + \pi) = \frac{1}{2}\)[/tex] over the interval [tex]\(\left[\frac{\pi}{2},\pi\right]\)[/tex]. The correct answer is:
[tex]\[ \boxed{\frac{2\pi}{3}} \][/tex]
Thank you for visiting our platform. We hope you found the answers you were looking for. Come back anytime you need more information. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Thank you for trusting Westonci.ca. Don't forget to revisit us for more accurate and insightful answers.