Westonci.ca is the ultimate Q&A platform, offering detailed and reliable answers from a knowledgeable community. Experience the ease of finding accurate answers to your questions from a knowledgeable community of professionals. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
To construct the probability distribution, we fill in the table with the given probabilities:
[tex]\[ \begin{array}{|l|l|} \hline \text{Medical Tests } x & P(x) \text{ (Fractions only)} \\ \hline 0 & \frac{6}{15} \\ \hline 1 & \frac{5}{15} \\ \hline 2 & \frac{3}{15} \\ \hline 3 & \frac{1}{15} \\ \hline \end{array} \][/tex]
Now, let's answer the specific questions:
1. What is the probability of 1 medical test being performed? Simplify all fractions.
[tex]\[ P(x=1) = \frac{5}{15} = \frac{1}{3} \][/tex]
2. What is the probability of less than 2 medical tests being performed?
[tex]\[ P(x < 2) = P(x=0) + P(x=1) = \frac{6}{15} + \frac{5}{15} = \frac{11}{15} \][/tex]
3. What is the probability of between 0 and 1 tests being performed, inclusive?
[tex]\[ P(0 \leq x \leq 1) = P(x=0) + P(x=1) = \frac{6}{15} + \frac{5}{15} = \frac{11}{15} \][/tex]
4. What are the mean and standard deviation? Use decimals and round to the nearest thousandth.
- The mean (μ) of the distribution is:
[tex]\[ \mu = 0 \cdot \frac{6}{15} + 1 \cdot \frac{5}{15} + 2 \cdot \frac{3}{15} + 3 \cdot \frac{1}{15} = 0.933 \][/tex]
- The variance (σ²) is:
[tex]\[ \begin{align*} \sigma^2 &= \left(0 - \mu\right)^2 \cdot \frac{6}{15} + \left(1 - \mu\right)^2 \cdot \frac{5}{15} + \left(2 - \mu\right)^2 \cdot \frac{3}{15} + \left(3 - \mu\right)^2 \cdot \frac{1}{15} \\ \end{align*} \][/tex]
- The standard deviation (σ) is the square root of the variance:
[tex]\[ \sigma = 0.929 \][/tex]
So, summarizing:
[tex]\[ \begin{array}{l} \mu = 0.933 \\ \sigma = 0.929 \end{array} \][/tex]
[tex]\[ \begin{array}{|l|l|} \hline \text{Medical Tests } x & P(x) \text{ (Fractions only)} \\ \hline 0 & \frac{6}{15} \\ \hline 1 & \frac{5}{15} \\ \hline 2 & \frac{3}{15} \\ \hline 3 & \frac{1}{15} \\ \hline \end{array} \][/tex]
Now, let's answer the specific questions:
1. What is the probability of 1 medical test being performed? Simplify all fractions.
[tex]\[ P(x=1) = \frac{5}{15} = \frac{1}{3} \][/tex]
2. What is the probability of less than 2 medical tests being performed?
[tex]\[ P(x < 2) = P(x=0) + P(x=1) = \frac{6}{15} + \frac{5}{15} = \frac{11}{15} \][/tex]
3. What is the probability of between 0 and 1 tests being performed, inclusive?
[tex]\[ P(0 \leq x \leq 1) = P(x=0) + P(x=1) = \frac{6}{15} + \frac{5}{15} = \frac{11}{15} \][/tex]
4. What are the mean and standard deviation? Use decimals and round to the nearest thousandth.
- The mean (μ) of the distribution is:
[tex]\[ \mu = 0 \cdot \frac{6}{15} + 1 \cdot \frac{5}{15} + 2 \cdot \frac{3}{15} + 3 \cdot \frac{1}{15} = 0.933 \][/tex]
- The variance (σ²) is:
[tex]\[ \begin{align*} \sigma^2 &= \left(0 - \mu\right)^2 \cdot \frac{6}{15} + \left(1 - \mu\right)^2 \cdot \frac{5}{15} + \left(2 - \mu\right)^2 \cdot \frac{3}{15} + \left(3 - \mu\right)^2 \cdot \frac{1}{15} \\ \end{align*} \][/tex]
- The standard deviation (σ) is the square root of the variance:
[tex]\[ \sigma = 0.929 \][/tex]
So, summarizing:
[tex]\[ \begin{array}{l} \mu = 0.933 \\ \sigma = 0.929 \end{array} \][/tex]
Thanks for stopping by. We are committed to providing the best answers for all your questions. See you again soon. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Stay curious and keep coming back to Westonci.ca for answers to all your burning questions.